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Small Scale Ocean Dynamics

Instructor: Raffaele Ferrari

Turbulent flows

Richard Feynman (1964) in his Lecture on Physics observed that,

Often, people, in some unjustified fear of physics, say you can’t write an
equation for life. Well, perhaps we can. As a matter of fact, we very
possibly already have the equation to a sufficient approximation, when we
write the equation for quantum mechanics:

Hψ = − h̄
i

∂ψ

∂t
. (1)

However, we are unable to reconstruct the field of biology from this equa-
tion, and we depend on detailed observation of biological phenomena.

Uriel Frisch (1995) in his book Turbulence points out that an analogous situation
prevails in the study of turbulent flows. The equations, generally referred to as the
Navier-Stokes equations, have been know since Navier (1827) and Stokes (1845),

Du

Dt
= − 1

ρ0
∇p+ ν∇2u, (2)

∇ · u = 0, (3)

The Navier-Stokes equations probably contain all of turbulence. Yet it would be
foolish to try to guess from these equations all the variety of regimes of turbulent
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Figure 1: Examples of turbulent flows at the surface of the Sun, in the Earth’s
atmosphere, in the Gulf Stream at the ocean surface, and in a volcanic eruption.

flows without looking at experimental facts. The phenomena are almost as varied as
in the realm of life. The flows shown in Fig. 1 are example of solutions of the Navier-
Stokes equations, with modifications to account for rotation and density variations.
But nobody knows how to derive these solutions from the equations themselves.

A good way to make contact with the world of turbulence phenomena is through
observations of natural flows. Examples are ubiquitous in the ocean, atmosphere,
lakes, and rivers of our Earth, in the atmospheres of other planes, in stars, galaxies,
and space gases (neutral and ionized). A few examples are shown in Fig. 1. These
flows are very irregular and do not display the regularity of the solutions of the Navier-
Stokes equations that we studied so far in this course. The field of turbulence can be
defined as the attempt to bring together our understanding of the laws that govern
fluid dynamics (the Navier-Stokes equations) with the irregular nature of real flows.

But how can we tell which natural flows are turbulent and which are not? As for the
problem of defining life, there is no simple answer. A useful approach is to list what
properties must be present to consider a flow turbulent.
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Properties of turbulent flows

• Broadband spectrum in space and time

Turbulent flows are characterized by structures on a broad range of spatial and
temporal scales, even given smooth or periodic initial conditions and forcing.
That is turbulent flows have a broadband spectrum both in frequency and
wavenumber domains.

If L is the length scale of the largest motions and l is the length scale of the
smallest motions in a flow, then a large range of spatial scales implies L� l. The
scale l is typically the scale at which dissipation becomes important and removes
energy from the flow. The scale L, instead, is set by the forcing mechanisms
that set the large-scale flow. The ratio L/l is the Reynolds number Re, and
L � l implies that the Reynolds number be large. Turbulent flows have large
Reynolds numbers (Fig. 2 and 3).

• Dominated by advective nonlinearity

A field of non-interacting linear internal waves with many different frequencies
and wavenumbers can also have a large range of length scales, but it is not
turbulent. Why not? In a turbulent flow the different scales interact, through
the nonlinear terms in the equations of motion. And these nonlinear interactions
are responsible for the presence of structure on many different scales. Thus the
broad band spectrum appears as a result of the internal dynamics. In a field of
linear internal waves, instead, the broad band spectrum is generated by external
controls like forcing, initial or boundary conditions (Fig. 4).

• Unpredictable in space and time

Turbulent flows are predictable for only short times and short distances. Even
though we know the equations that govern the evolution of the fluid, we cannot
make predictions about the details of the flow due to its sensitive dependence
on initial and boundary conditions. This sensitive dependence is once more a
result of the strong nonlinearity of the flow. Predictability, however, can be
recovered in a statistical sense, as we will illustrate in a bit (Fig. 5). The sensi-
tive dependence on initial and boundary conditions is a fundamental property
of chaotic systems. Are thus turbulence and chaos synonyms? No. Turbulent
motions are indeed chaotic, but chaotic motions need not be turbulent. Chaos
may involve only a small number of degrees of freedom, i.e. it can be narrow
band in space and/or time. There are numerous examples of chaotic systems
characterized by temporal complexity, but spatial simplicity, like the Lorenz’s
system. Another class of chaotic flows is represented by amplitude equations
that describe the slow time and large scale evolution of nearly monochromatic
waves. Turbulence is different, because it is always complex both in space and
time.
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Figure 2: High Re jet exiting from a nozzle.

Figure 3: Uniform flow incident on a cylinder at low Re. Uniform flow incident on
two cylinders at high Re.
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Figure 4: These internal wave photographs were taken by astronauts on board the
space shuttle on Jan. 14, 1986. The picture shows the sea surface of the Eastern
Pacific, around the Galapagos Islands, 600 miles off the coast of Ecuador. The sea
surface coverage of a photograph is about of 75 km by 75 km. There is a clear
difference between the wavy patterns of internal waves and the turbulent patterns of
clouds.
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Figure 5: Two sections of one second of a signal recorded by a hot-wire (sampled at
5 kHz) in a wind tunnel. The two sections differ in some small details of the flow
upstream, i.e. initial conditions. The statistical properties of the two signals are
similar, but the details of the flow are completely different.
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Figure 6: Evolution of a simulated tracer deployed in the Arctic vortex in April 1993.
The circles on plots for 30 April, 1, 6, and 7 May are the location where tracer values
representative of vortex air where measured aboard the ER-2 aircraft. There is good
agreement between the location of the filaments of ex-vortex air in the simulation
and the locations where vortex air was observed (See Waugh et al., 1997 for details).
The tracer tends to spread out from the location where it was released.

• Time irreversible

Turbulent motions are not time reversible. As time goes on, turbulent motions
tend to forget their initial conditions and reach some equilibrated state. Tur-
bulence mixes stuff up, it does not unmix it (Fig. 6). A challenge of the last
part of this course will be to explain how irreversibility can arise in fluids that
are governed by classical mechanics, i.e. Newton’s dynamics, which is time
reversible.

The classification of properties that a flow must display to be considered turbulent
is a subject of continuous debate in the scientific community. Many authors make
narrower definitions of turbulence, limiting the scope to:

• flows exhibiting explosive three dimensional vortex stretching,

• flows obeying Kolmogorov’s cascade law (to be introduced next class),

• flows with a finite cascade of energy toward smaller scales.

These definitions are arbitrarily exclusive, since there are many geophysical flows
which share the fundamental properties of broadband spectrum, advective nonlinear-
ity, unpredictability, and time irreversibility, yet, due to the effects of rotation and
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stratification, are not fully three dimensional, do not satisfy Kolmogorov’s law, and
have no energy transfer toward smaller scales.

Governing equations

We will describe turbulence using the Boussinesq equations. [The Boussinesq equa-
tions follow from the full Navier-Stokes equations if one neglects all density fluctua-
tions except those due to heat, salt, and humidity]. The ocean and the atmosphere
have a more complex thermodynamics than these equations do, but this is largely
extraneous to the fundamental behaviors of turbulence and thus will be ignored. The
three dimensional Boussinesq system is,

∂u

∂t
+ (u · ∇)u︸ ︷︷ ︸

inertia

= − 1

ρ0
∇p+ ν∇2u︸ ︷︷ ︸

friction

+

 bẑ︸︷︷︸
buoyancy

− f ẑ × u︸ ︷︷ ︸
Coriolis

 , (4)

∂b
∂t

+ (u · ∇)b︸ ︷︷ ︸
advection

= κ∇2b︸ ︷︷ ︸
diffusion

 , (5)

∂c
∂t

+ (u · ∇)c︸ ︷︷ ︸
advection

= κ∇2c︸ ︷︷ ︸
diffusion

 , (6)

∇ · u = 0, (7)

where p is the pressure, f is the Coriolis frequency associated with planetary rotation,
and the vertical versor ẑ is assumed to be parallel to both gravity and the axis of
rotation. The buoyancy b is defined in terms of density as ρ = ρ0(1 − g−1b). Notice
that b has the dimension of an acceleration. These equations must be complemented
by forcing, boundary and initial conditions to obtain a well posed problem. We can
also consider the evolution of a passive tracer c which satisfies the same equation as
b, but has no influence on the evolution of u.

These equations have conservative integral invariants for energy, and all powers and
other functionals of buoyancy, in the absence of friction and diffusion. For non-
conservative dynamics, the energy and scalar variance satisfy the equations,

∂E

∂t
= −ε, ∂B

∂t
= −εB, (8)

where,

[E,B, ε, εB] =
∫ ∫ ∫

dx
[
1

2
u · u− bz, b2, ν∇u : ∇u + κz∇2b, κ∇b · ∇b

]
, (9)

In deriving (8), it is assumed that there are no boundary fluxes of energy or scalar
variance. These integrals measures of the flow can only decrease with time through
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the action of molecular viscosity and diffusivity. The only exception is the compressive
work, κz∇2b, which can act as a source of mechanical energy. We will return to this
issue in the chapter on convection.

Every problem we will consider lies within the set of solutions of the PDE system
in (4) through (7). No general solution is known, nor is any in prospect, because
we do not know a mathematical methodology that seems powerful enough. However
computers are giving us access to progressively better particular solutions, i.e. with
progressively larger nonlinearities.

The brackets in (4) through (5) contain the effects of buoyancy and rotation, and
these terms are ignored in the classical literature on turbulence, which deals with
uniform density fluids in inertial reference frames. In these simpler circumstances,
the Boussinesq system is called the incompressible Navier-Stokes equations, or with
the further elimination of the frictional term, the incompressible Euler equations.

Because of the lack of general solutions to the Boussinesq equations, it is useful to
identify which terms might be neglected in specific situations in order to simplify the
problem and make analytical progress. The relative size of the various terms that
appear in (4) through (7) can be estimated in terms of nondimensional numbers. The
ones that will be most useful in this class are as follows.

• Inertia and friction

The Reynolds number is defined as

Re ≡ UL

ν
(10)

Here U and L are characteristic velocity and length scales of the flow and ν is
the kinematic viscosity of the fluid. The Reynolds number measures the ratio
of inertia and friction,

|(u · ∇)u|
|ν∇2u|

≈ U/L U

νU/L2
= Re. (11)

Equivalently, the Reynolds number is the ratio of the characteristic scale of the
flow L and the scale at which momentum is dissipated l = ν/U . In turbulent
flows Re� 1, advective dominance⇒ nonlinear dynamics⇒ chaotic evolution
and broadband spectrum.

The focus of this course is on turbulence in the Earth’s ocean and atmosphere.
Typical values for ν near the Earth’s surface are 1.5 × 10−5 m2 s−1 for air
and 1.0 × 10−6 m2 s−1 for water. These values are small enough, given typical
velocities U , that Re � 1 on all spatial scales L from the finescale of about
1 m to the planetary scale of about 104 km. For example, U = 1 m s−1 and
L = 103 m give Re = 109− 1010 respectively for the atmosphere and the ocean.
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Figure 7: Uniform flow with velocity U , incident on a cylinder of diameter L.

For Re � 1, the frictional term is small, at least at the scale L. Paradoxi-
cally, however, the dissipation terms in (8) control the energetics of the system.
Thus, there must be a profound difference in solutions between the asymptotic
tendency as Re → ∞, and the Euler limit, Re = ∞ or ν = 0. The difference
is that as long as Re ≤ ∞, there are small scales at which friction becomes
important and Re is small.

It is instructive to check how Re controls the behavior of solutions in a real flow.
Let us consider a fluid of uniform density in an inertial reference system, i.e.
let us neglect rotation and variations in buoyancy in (4) and (5) (b = f = 0). A
classical example is a uniform flow incident on a cylinder (figure 7). Figures 8
through 10 show how the flow past the cylinder changes for different Reynolds
numbers. flow that develops behind the obstacle (run dns-midi.mpg).

• Advection and diffusion

Pe ≡ UL

κ
(12)

The Peclet number is the direct analog of Re for a conserved tracer c with a
diffusivity κ and measures the relative importance of advection and diffusion.
At large Pe, the tracer evolution is dominated by advection. Once more, the
limit Pe → ∞ is very different from Pe = ∞, because dissipation, no matter
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Figure 8: Flow past a cylinder at R = 0.16 and R = 1.54 (Van Dyke 1982).

how small, eventually is responsible for removing structure from the tracer field
(Fig. 11).

• Friction and diffusion
Pr ≡ ν

κ
(13)

The frictional length scale is lν = ν/U and the diffusive length scale lκ = κ/U .
The Prandtl number is defined as the ratio of these two length scales, Pr ≡
lν/lκ. The Prandtl number is a property of the fluid, not of the particular flow.
Hence there is a restriction on the transfer of information from experiments
with one fluid to those with another. For Pr > 1 the scales at which friction
becomes important are larger than those for diffusion and, at some small scale,
we expect to find smooth velocity fields together with convoluted tracer fields.
For Pr < 1 we expect the opposite. The Prandtl numbers for air and water are
0.7 and 12.2 respectively. The paper by Paparella and Young (Journal of Fluid
Mechanics, 2002) shows examples of flows with low and high Pr.

• Inertia and Coriolis

Ro ≡ U

fL
(14)

The Rossby number Ro measures the relative importance of the real inertial
forces and the fictitious Coriolis force, that appear because of the rotating ref-
erence system. Thus Ro measures the importance of rotation in the problem at
hand. Ro � 1 characterizes essentially non-rotating turbulence, while Ro ≤ 1
flows are strongly affected by rotation (Fig. 12).

• Buoyancy and diffusion

Ra ≡ ∆bL3

κν
(15)

In convective problems, motions are generated by imposing an unstable den-
sity stratification on the fluid (∂b/∂z < 0). In these problems, it is useful to
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Figure 9: Flow past a cylinder at R = 9.6, R = 13.1, and R = 26 (Van Dyke 1982)
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Figure 10: Wake behind two cylinders at R = 1800, and homogeneous turbulence
behind a grid at R = 1500 (Van Dyke 1982).

characterize turbulence in terms of the Rayleigh number, i.e. the ratio of
the diffusive timescale tκ = L2/κ and the buoyancy timescale tb = (L/∆b)1/2.
The buoyancy scale ∆b is the buoyancy difference maintained across the layer
depth L through external forcing. If the forcing is imposed by maintaining a
temperature difference ∆T , then one has ∆b = gα∆T , where α is the coefficient
of thermal expansion of the fluid, and g the acceleration of gravity. Convec-
tion starts if tκ � tb, i.e. if RaPr � 1, when diffusion is too slow to change
substantially the buoyancy of water/air parcels as they rise (Fig. 13).

• Buoyancy and inertia

Ri ≡ ∂b/∂z

|∂u/∂z|2
(16)

In the presence of stable buoyancy stratification, vertical motions tend to be
suppressed, but turbulence can still emerge, if there is enough energy in the
horizontal velocity field. A useful parameter to characterize the flow in these
problems is the ratio of the buoyancy timescale tb = (L/∆b)1/2 = 1/(∂b/∂z)1/2

and the inertial timescale due to horizontal shears in the flow ti = L/U =
1/(∂u/∂z). This ratio is called the gradient Richardson number Ri. If Ri �
1, buoyancy can be neglected in the momentum equations, and it becomes a
passive scalar with no feedbacks on the dynamics (Fig. 14).

A final remark about the only term that never appeared explicitly in the nondimen-
sional numbers presented: the pressure force. Pressure can be formally eliminated
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Figure 11: Contours of two tracers advected by a two dimensional flow field. The two
tracers have Pe = 100 (upper panel) and Pe = 10 (lower panel).
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Figure 12: Rotational effects produce the well-known jets in the atmosphere of
Jupiter. The Ro can be estimated to be of order 0.1 using U = 300 m/s, f = 2.5 ·10−4

s−1, and L = 10, 000km).

Figure 13: Convection in air at a Ra = 1012 and Ra = 1014 (Alain Vincent and David
A. Yuen, Phys. Review E, 2000).
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Figure 14: Kelvin Helmholtz instability in the atmosphere. Picture taken near Wash-
ington, D.C.. Darker areas are clouds.

from the equations. This is a consequence of the Boussinesq approximation. We
simply need to take the divergence of the momentum equation in (4) and note that
∇ · ut = 0 because of incompressibility. This yields the relation,

∇2p = ρ0∇ ·
[
−(u · ∇)u + ν∇2u + bẑ − f ẑ × u

]
. (17)

Since there are no time derivatives in (17), pressure is a purely diagnostic field, which
is wholly slaved to u. It can be calculated from (17) and then substituted for the
pressure gradient force in the momentum equations. Its role is to maintain incom-
pressibility under the action of all other forces. It would be redundant to introduce
nondimensional parameters involving pressure, because any such parameters can be
expressed as combinations of the parameters already discussed.
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A statistical description of turbulence

The evolution of turbulent flows is very complex. Turbulent flows appear highly dis-
organized with structure at all scales. Signals appear unpredictable in their detailed
behavior. However some statistical properties of the flow can be quite reproducible.
This suggests that it can be useful to seek a statistical description of turbulent flows.
A statistical measure is an average of some kind: over the symmetry coordinates,
if any are available (e.g, a time average for stationary flows); over multiple realiza-
tions (e.g, an ensemble); or over the phase space of solutions if the dynamics are
homogeneous.

A similar behavior is observed in simple deterministic maps. Frisch, is chapter 3
of his book Turbulence, provides examples of deterministic maps that are chaotic
and not predictable in their detailed properties, but whose statistical properties are
reproducible, just like for turbulent flows.

Thus it seems quite appropriate to introduce a probabilistic description of turbulence.
However we know that the basic Boussinesq equations are deterministic. How can
chance and chaos arise in a purely deterministic context? A nice discussion of this
issue can be found, once more, in chapter 3 of Frisch’s book.

Ilya Prigogine has in recent years brought about a radical change of perspective.
The statistical description of turbulence is not merely a convenience to describe the
excessive amount of information contained in the fluid. Turbulence is intrinsically
stochastic. The argument goes that single trajectories of fluid parcels in phase space
are deterministic, but a fluid composed by a large ensemble of parcels is not. All
parcels interact in a such a way that information is continuously spread, and the
ensemble evolves toward a collective state that can be defined only statistically (like
thermodynamics). This description suggests that irreversibility appears in nature as
a result of the statistical behavior of parcel interactions.

Even though Frisch (and most of the scientific community) and Prigogine disagree in
their explanation of why a statistical description of turbulence is appropriate, it is
clear that they both agree that turbulence and statistics go hand in hand. Thus we
will spend the rest of this lecture to illustrate how statistical tools can be applied to
describe turbulent flows.

The poor man’s Navier-Stokes map

Following Frisch we introduce a discrete map that mimics some of the properties of
the Navier-Stokes equations: the poor man’s Navier-Stokes equation. The analogy is
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most apparent if we discretize the Navier-Stokes equation in time,

vn+1 − vn
τ︸ ︷︷ ︸
vt

= − v2n
λ︸︷︷︸

−u·∇u+∇p

− ν
vn
λ2︸︷︷︸

+ν∇2u

+f. (18)

With appropriate choice of time step τ , length scale λ, friction ν, and forcing f , we
can reduce the map to,

vn+1 = −2v2n + 1. (19)

This map displays broadband spectrum in time, nonlinearity, unpredictable behavior,
and time irreversibility (Fig. 15). However it is derived assuming a specific lengthscale
λ and it cannot display a broadband spatial spectrum. Thus the poor man’s Navier-
Stokes equation cannot display turbulent behavior. However it is a useful tool to
study how a deterministic system can produce chaos and unpredictable behavior.
Properties of this map are:

• the signal is very disorganized

• trajectories are unpredictable

• histogram of positions is quite reproducible

The poor man’s linear Navier-Stokes equation

We also consider a linear version of the poor man’s Navier-Stokes equation,

vn+1 = −1

2
vn + 1. (20)

Properties of this map are:

• the signal is very organized

• trajectories are predictable

• histogram of positions and trajectories are complementary descriptions

In this map all trajectories collapse to a fixed point v = 2/3. The histogram collapses
to a spike centered at v = 2/3.
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Figure 15: Trajectories and histograms for the poor man’s Navier-Stokes equation .
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Figure 17: The evolution of the histograms for the histograms for the poor man’s
linear Navier-Stokes equation and the poor man’s Navier-Stokes equation .

Trajectory and histograms of maps

The two previous examples suggest that the histograms and trajectories contain the
same information for the linear map. However in the nonlinear map the histograms
show a predictability that does not emerge in individual trajectories. The histogram
always converge toward the same distribution, regardless of initial conditions (Fig. 17).
Why does the histogram of the poor man’s Navier-Stokes equation converge to a
limit solution? Why a deterministic system such as a map has a regular statistical
behavior? We do not have complete answers to these equations, but progress is
being made. The current understanding is that as time progresses the trajectory
explores the whole phase space and gathers information about all other trajectories.
Thus information is continuously spread, and the ensemble evolves toward a collective
state that can be defined only statistically.
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A probabilistic description of maps

In this section we derive a statistical description of the maps we considered. The
goal is to understand the difference between the trajectory-based description and the
histogram-based description. First we need to determine the histogram P (v), also
known as the probability distribution function, so that we can observe the recurrence
relation Pn+1(v) = UPn(v). The distribution function Pn+1(v) after n+1 iterations is
obtained by the action of the operator U on Pn(v), which is the distribution function
after n iteration of the map. The operator U acts on functions and it is known as the
Perron-Frobenius operator.

We can derive the Perron-Frobenius operator for the poor man’s linear Navier-Stokes
map. Simple algebra gives,

vn+1 = 1− 1

2
vn ⇐⇒ Pn+1(v) = 2Pn (2− 2v) . (21)

Equilibrium solutions correspond to probability functions that do not change under
the action of the map, i.e. Pn+1(v) = Pn(v). For the poor man’s linear Navier-Stokes
map the only stationary solution is a Dirac delta function centered at 2/3. This is
equivalent to the result that all trajectories collapse to v = 2/3. No new information
is gained by looking at the probability distribution.

In order to derive the Perron-Frobenius operator for poor man’s Navier-Stokes map,
it is useful to simplify the map through a change of variables,

vn = sin
(
πxn −

π

2

)
, 0 ≤ xn ≤ 1, (22)

and similarly Navier-Stokes map to a simpler map. Let us make the following change
of variable,

vn+1 = sin
(
πxn+1 −

π

2

)
, 0 ≤ xn ≤ 1, (23)

It is left as an exercise to prove that the map for xn is,

xn+1 =

{
2xn, 0 ≤ xn ≤ 1/2
2− 2xn, 1/2 ≤ xn ≤ 1

(24)

This is known as the tent map, because of the shape of its graph. It is now easy
to understand why this map displays sensitive dependence on initial conditions. See
Frisch’s book for details.

We can write the Perron-Frobenius operator for the tent map,

Pn+1(v) =
1

2

[
Pn

(
v

2

)
+ Pn

(
1− v

2

)]
. (25)
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As a consequence of the form of the Perron-Frobenius operator, if Pn is constant
equal to P0, then Pn+1 is also equal to P0. The uniform distribution P = P0 is
the equilibrium distribution. The uniform distribution is indeed the final state that
one obtains by running numerical integrations of the tent map. Thus the statistical
description predicts a result that cannot be derived from simple inspection of the
deterministic equation.

How do we know that the equilibrium distribution is obtained for any set of initial
conditions? In order to solve arbitrary initial value problems, we need the full set of
eigenfunctions and eigenvalues of the Perron-Frobenius operator. These eigenfunc-
tions can be used to represent any arbitrary initial condition. The eigenfunctions for
the tent map belong to a family of polynomials called the Bernoulli polynomials. The
eigenfunctions are found by solving the problem,

P (v) = λ UP (v). (26)

In the example of the tent map, we find that the eigenfunctions have λ ≤ 1. For
example an eigenfunction is given by,

P (v) = v2 − 2v +
2

3
. (27)

This eigenfunction has an eigenvalues λ = 1/4. The uniform distribution P = 1 is
the only eigenfunction with eigenvalue λ = 1. Thus all eigenfunctions other than
the uniform distribution decay in time. And the uniform distribution emerges as the
asymptotic state.

It is left as an exercise to relate the probability distribution of the tent map to that
of the poor man’s Navier-Stokes map, and show that it correctly predicts what we
found by numerical integrations of the map.

Shortcoming of the poor man’s Navier-Stokes analogy

The poor man’s Navier-Stokes map is a useful tool to illustrate some important char-
acteristics of turbulent flows. However this tool is pathological in at least two ways,

• The poor man’s Navier-Stokes map explores the full available space [−1, 1].
Typically turbulent systems are dissipative and collapse on an attractor with
fractal structure (at least for finite-dimensional systems).

• Natural systems tend to have more than one attractor. Thus the equilibrium
statistical properties are not fully predictable.
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Furthermore there are technical issues that have not been solved for the Navier-
Stokes equations. We do not know if solutions exist for all times for arbitrary initial
condition. We do not know how to write the equivalent of the Perron-Frobenius
operator.

The Closure Problem

Although it is impossible to predict the detailed motion of each eddy in a turbulent
flow, the mean state may not be changing. For example, consider the weather sys-
tem, in which the storms, anti-cyclones, hurricanes, fronts etc. constitute the eddies.
Although we cannot predict these very well, we certainly have some skill at predict-
ing their mean state, the climate. For example, we know that next summer will be
warmer than next winter, and that in California summer will be drier than winter.
We know that next year it will be colder in Canada than in Mexico, although there
might be an occasional day when this is not so. We would obviously like to be able
to predict the mean climate without necessarily trying to predict or even simulate
all the eddies. We might like to know what the climate will be like one hundred
years from now, without trying to know what the weather will be like on February
9, 2056, plainly an impossible task. Even though we know what equations determine
the system, this task proves to be very difficult because the equations are nonlinear.
This is the same problem we discussed at the beginning of the lecture. We seek a
statistical description of the turbulent flow, because a detailed description is beyond
our grasp. The simplest statistical quantity we might try to predict is the mean
flow. However, because of the nonlinearities in the equations, we come up against the
closure problem.

The program is to first decompose the velocity field into mean and fluctuating com-
ponents,

u = ū + u′. (28)

Here u is the mean velocity field, and u′ is the deviation from that mean. The mean
may be a time average, in which case ū is a function only of space and not time.
It might be a time mean over a finite period (e.g a season if we are dealing with
the weather). Most generally it is an ensemble mean. Note that the average of the
deviation is, by definition, zero; that is u′ = 0. We then substitute into the momentum
equation and try to obtain a closed equation for ū. To visualize the problem most
simply, we carry out this program for a model nonlinear system, proposed by Geoff
Vallis in his GFD book, which obeys,

du

dt
+ uu+ νu = 0. (29)
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The average of this equation is,

dū

dt
+ uu+ νū = 0. (30)

The value of the term uu is not deducible simply by knowing ū, since it involves
correlations between eddy quantities u′u′. That is, uu = ūū + u′u′ 6= ūū. We can go
to next order to try to obtain a value for uu. First multiply (29) by u to obtain an
equation for u2 , and then average it to yield,

1

2

duu

dt
+ uuu+ νuu = 0. (31)

This equation contains the undetermined cubic term uuu. An equation determining
this would contain a quartic term, and so on in an unclosed hierarchy. Most current
methods of closing the hierarchy make assumptions about the relationship of (n+1)-th
order terms to n-th order terms, for example by supposing that,

uuuu = uu uu− αuuu, (32)

where α is some parameter. Such assumptions require additional, and sometimes
dubious, reasoning. Nobody has been able to close the system without introducing
physical assumptions not directly deducible from the equations of motion.

The Reynolds equations

Let us repeat the averaging procedure for the full Boussinesq equations. We start
with the momentum equations,

∂ū

∂t
+ (ū · ∇)ū + f ẑ × ū = b̄ẑ − 1

ρ0
∇p̄+ ν∇2ū− (u′ · ∇)u′, (33)

The extra term on the right hand side represent the effect of eddy motions on the
mean flow. If the average operator is a time average over some time T , then eddy
motions are those motions with time scales shorter than T . If the average operator is
a spatial average over some scale L, then eddy motions are those motions with spatial
scales shorter than L. If the average operator is an ensemble mean, then the eddy
motions are those motions that change in every realizations, regardless of their scale,
i.e. they represent the unpredictable or turbulent part of the flow.

Using the continuity equation,

∇ · u = 0 ⇒ ∇ · ū = 0 and ∇ · u′ = 0, (34)

we can rewrite the averaged momentum equation as,

∂ū

∂t
+ (ū · ∇)ū + f ẑ × ū = b̄ẑ − 1

ρ0
∇ ·

[
p̄I− ρ0ν∇ū + ρ0u′u′

]
. (35)
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I is th unit matrix. These are the so-called Reynolds momentum equation and
the eddy flux ρ0u′u′ represent the Reynolds stress tensor due to fluctuations in
velocity filed.

We can similarly decompose the buoyancy equation into a mean and a fluctuating
component, b = b̄+b′, and write an equation for the mean component by substituting
back into the buoyancy equation,

∂b̄

∂t
+ (ū · ∇)b̄ = −∇ ·

[
−κ∇b̄+ u′b′

]
. (36)

The eddy term u′b′ represent the Reynolds eddy flux of buoyancy.

The problem of turbulence is often that of finding a representation of such Reynolds
stress and flux terms in terms of mean flow quantities. However, it is not at all clear
that a general solution (or parameterization) exists, short of computing the terms
explicitly.

Eddy viscosity and eddy diffusivity

The simplest closure for the Reynolds stress terms is one which relates u′u′ to the
mean flow, by assuming a relation of the form,

u′u′ = −νT∇ū, (37)

where νT is the eddy viscosity. With such a closure the Reynolds stress term
takes the same form as the mean viscosity term, but with a different viscosity. In
essence, this closures states that turbulent eddies are similar to molecular motions
that constantly act to redistribute and homogenize momentum. Similarly, for the
tracer flux term we can define an eddy diffusivity

u′b′ = −κT∇b̄. (38)

This eddy viscosity/diffusivity closure is the most commonly used in modeling and
interpretation of geophysical observations. At the crudest level κT and νT are assumed
to be constants; in more sophisticated models they are functions of the large scale
flow. However, an eddy viscosity/diffusivity closure is rarely appropriate.

(Further reading: Chapter 1 of McComb)

Mixing length model

Prandtl provided a heuristic rationalization for the eddy viscosity/diffusivity closure.
Here we follow the derivation for the eddy viscosity νT , but the derivation can be
repeated for any passive scalar as well.
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Consider a parcel in the shear flow introduced above, (ū(y), 0, 0). Assume that the
parcel was initially at at some position y. If the parcel moves due to turbulent motion,
up to a position y+ δy, and it conserves momentum, then it has a momentum deficit
compared to the parcels around it of,

u′ = [ū(y)− ū(y + δy)] + δu ≈ −δy∂ū
∂y

+ δu, (39)

v′ = δv, (40)

where δu and δv are the random velocity fluctuations that every particle experience.
Notice that we also had to assume,

δy � ∂ū/∂y

∂2ū/∂y2
, (41)

in order to neglect higher order terms in the Taylor series expansion. If we further
assume that the statistics of turbulent fluctuations are homogeneous and isotropic,

u′v′ = −δyδv∂ū
∂y
. (42)

Introducing the mixing length ` - the distance at which δv and δy become uncor-
related - we can write,

δyδv = −c `
√
δv2, (43)

where c is a constant. We then have,

u′v′ = −νT
∂ū

∂y
= −c `

√
δv2

∂ū

∂y
, (44)

where νT is the eddy viscosity,

νT = c `
√
δv2. (45)

Under the isotropy assumption δv2 = δu2 = δw2, we can write this as

νT = cµ `
√
q (46)

where q/2 is the small-scale turbulent kinetic energy, TKE, and cµ is again a constant.
Eq.(46) could also be obtained on dimensional grounds, by assuming the turbulent
motion is characterized by a single velocity scale

√
q, and a single lengthscale `.

The problem of estimating νT is now reduced to one of estimating the TKE and the
mixing length `. Notice that if q and ` change in space, it seems that we have to
abandon the assumption that the turbulence is homogeneous. But homogeneity is at
the core of eddy mixing length arguments. A way out of this apparent inconsistency
is to assume that turbulence is homogeneous on scales smaller than the model grid
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size and thus we can apply mixing length theory. However variations in turbulent
levels appear on the much larger scales explicitly resolved by the model and this is
why we need equations for q and ` or q and ε.

A second issue of concern is that eddy mixing length theory should not be used for
non-conserved quantities. If we assume that the average is carried on distances so
short that pressure effects do not change momentum much, then we can apply eddy
mixing length theory to momentum. However this is often done for models whose
resolution is too coarse for this to be true. The only rationale to use a large effective
viscosity in these cases is numerical: without a large νT coarse resolution models tend
to be unstable.
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