
12.802

Small Scale Ocean Dynamics

Instructor: Raffaele Ferrari

Kinetic energy and vorticity budgets in 3D turbu-

lence

The mean zonal velocity is zero by definition of homogeneity and isotropy. The
theory of 3D isotropic homogeneous turbulence is therefore a theory of the second
order statistics of the velocity field, i.e. the kinetic energy E ≡ 1/2〈u2i 〉. The angle
brackets represent an ensemble average.

In order to understand the energy balance of 3D flows, it is useful to derive the
vorticity equation. From the Navier-Stokes equations for a homogeneous fluid,

∂u

∂t
+ ζ × u = −∇

(
p+

1

2
u · u

)
− ν∇× ζ, (1)

∇ · u = 0, ζ = ∇× u, (2)

we can derive the vorticity equation,

∂ζ

∂t
+∇× (ζ × u) = ν∇2ζ. (3)

The energy equation can be written as,

∂E

∂t
+∇ · [u(p+ E)] = −νu · ∇ × ζ, (4)

or

∂E

∂t
+∇ · [u(p+ E) + νζ × u] = −2νZ, (5)
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with E ≡ 1/2(u · u) being the energy and Z ≡ 1/2(ζ · ζ) being the enstrophy.
Turbulence in the presence of boundaries can flux energy through the walls, but for
homogeneous turbulence the flux term must on the average vanish and the dissipation
is just 2νZ. The cascade of energy down to dissipation scales is closely tied to the
rotational nature of a turbulent flow.

Taking an ensemble average, denoted with angle brackets, the energy budget for an
isotropic homogeneous flow becomes,

∂〈E〉
∂t

= −ε, (6)

where ε ≡ 2ν〈Z〉. This equation state that the rate of change of turbulent kinetic
energy E is balanced by viscous dissipation ε. Such a balance cannot be sustained
for long times - a source of kinetic energy is needed. However sources of TKE are
typically not homogeneous: think of a stirrer or an oscillating boundary. We sidestep
this contradiction by assuming that for large Reynolds numbers, although isotropy
and homogeneity are violated by the mechanism producing the turbulence, they still
hold at small scales and away from boundaries. In this classic picture, we force the
energy at a certain rate, which is then balanced off by dissipation. But the energy
injection does not depend upon viscosity. For the balance (6) to hold, the enstrophy
must grow as the viscosity decreases. The enstrophy equation indeed has suitable
source terms,

∂〈Z〉
∂t

+∇ · 〈uZ − ν∇Z〉 = 〈ζiSijζj〉 − 〈ν(∂iζj)
2〉 (7)

where Sij = 1/2[∂iuj + ∂jui] is the rate of strain tensor. Therefore, if the vorticity
vector is on average aligned with the directions where the strain is causing exten-
sion rather than contraction, the enstrophy will increase. In other words, we expect
constant-vorticity lines to get longer on average. In a 3-D turbulent flow, the vortic-
ity is indeed on average undergoing stretching since this term ends up balancing the
sign-definite dissipation terms.

Dhar (Phyisics of Fluis, 19, 1976) gave a simple proof of why we might expect that the
average length of constant-voticity lines increases in a statistically isotropic velocity
field. Consider two neighboring fluid particles with position vectors r1(t) and r2(t).
Let δr = r2(t) − r1(t) be the infinitesimal displacement between the two moving
particles. Then,

Dδr

Dt
=
Dr2
Dt
− Dr1

Dt
. (8)

If δr is small, this gives,

Dδr

Dt
= u(r2, t)− u(r1, t) = (∂ju)δrj. (9)
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This equation is identical to the vorticity equation in the absence of dissipation,

Dζ

Dt
= (∂ju)ζj. (10)

We can therefore think that the vorticity is ”frozen into the fluid”. The field ζ
can be stretched and bent, but never thorn apart. Its topology is preserved despite
distortion. We can now proceed to analyze the evolution of δr and we will use the
results to understand the evolution of ζ.

Let δri(t) = δri(0) + ∆ri(t). The initial particle positions are given and non-random
(i.e. statistically sharp), but the subsequent locations acquire a statistical distribu-
tion that depends on the statistics of the velocity field. the mean square separation
between the fluid particles at time t is thus,

〈|δr|2〉 = |δr(0)|2 + 2δr(0) · 〈∆r(t)〉+ 〈|∆r(t)|2〉. (11)

For a statistically homogeneous and isotropic flow,

〈∆r(t)〉 = 0 (12)

and therefore,

〈|δr(t)|2〉 ≥ |δr(0)|2. (13)

The distance between fluid particles increases on average! Unfortunately, however,
this proof does not, strictly speaking, apply to the case of constant-vorticity lines,
because (12) holds only for fluid particles whose relative initial locations are initially
uncorrelated with the flow (and therefore does not apply to pairs of fluid particles
that always lie on a vorticity line). Thus (12) contributes plausibility, but not rigor,
to the idea that in a turbulent flows constant vorticity lines are stretched on average.

Kinetic Energy Spectra for 3D turbulence

0.1 Definition of KE in spectral space

For a flow which is homogeneous in space (i.e. statistical properties are independent of
position), a spectral description is very appropriate, allowing us to examine properties
as a function of wavelength. The average total kinetic energy can be written as,

E =
1

2

1

V

∫ ∫ ∫
〈ui(x)ui(x)〉 dx, (14)

where V is the volume domain. The spectrum φi,j(k) is then defined by,

E =
1

2

∫ ∫ ∫
〈φi,i(k)〉dk =

∫ ∫ ∫
E(k)dk (15)

3



where φi,j(k) is the Fourier transform of the velocity correlation tensor Ri,j(r),

φi,j(k) =
1

(2π)3

∫ ∫ ∫
Ri,j(r)e−ik.rdr, Ri,j(r) =

1

V

∫ ∫ ∫
uj(x)ui(x + r)dx. (16)

Ri,j(r) tells us how velocities at points separated by a vector r are related. If we
know these two point velocity correlations, we can deduce E(k). Hence the energy
spectrum has the information content of the two-point correlation.

KE(k) contains directional information. More usually, we want to know the energy
at a particular scale k = |k| without any interest in separating it by direction. To
find KE(k), we integrate over the spherical shell of radius k (in 3-dimensions),

E =
∫ ∫ ∫

E(k)dk =
∫ ∞
0

[∮
k2E(k)dσ

]
dk =

∫ ∞
0

E(k)dk, (17)

where σ is the solid angle in wavenumber space, i.e. dσ = sin θ1 dθ1 dθ2. We now
define the isotropic spectrum as,

E(k) =
∮
k2E(k)dσ =

1

2

∮
k2〈φi,i(k)〉dσ. (18)

For isotropic velocity fields the spectrum does not depend on directions, i.e. 〈φi,i(k)〉 =
φi,i(k), and we have,

E(k) = 2πk2φi,i(k). (19)

Energy budget equation in spectral space

We have an equation for the evolution of the total kinetic energy E. Equally interest-
ing is the evolution of E(k), the isotropic energy at a particular wavenumber k. This
will include terms which describe the transfer of energy from one scale to another,
via nonlinear interactions.

To obtain such an equation we must take the Fourier transform of the non-rotating,
unstratified Boussinesq equations,

∂ui
∂t
− ν ∂

2ui
∂x2j

= −uj
∂ui
∂xj
− 1

ρ0

∂p

∂xi
. (20)

The two terms on the lhs are linear and are easily transformed into Fourier space,

∂

∂t
ui(x, t) ⇐⇒

∂

∂t
ûi(k, t), (21)

ν
∂2

∂x2j
ui(x, t) ⇐⇒ −νk2j ûi(k, t). (22)
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In order to convert the pressure gradient term, we first notice that taking the diver-
gence of the Navier-Stokes equation we obtain,

∂2p

∂x2i
= −ρ0

∂ui
∂xj

∂uj
∂xi

. (23)

Thus both terms on the rhs of Eq. (20) involve the product of velocities. The con-
volution theorem states that the Fourier transform of a product of two functions is
given by the convolution of their Fourier transforms,

1

V

∫ ∫ ∫
ui(x, t)uj(x, t)e

ik·xdx =
1

(2π)3

∫ ∫ ∫
ûi(p, t)ûj(q, t)δ(p + q− k)dpdq. (24)

Applying the convolution terms to the terms on the rhs we get, The two terms on
the lhs are linear and are easily transformed in Fourier space,

uj
∂ui
∂xj

⇐⇒ i
∫ ∫ ∫

qjûj(p, t)ûi(q, t)δ(p + q− k)dpdq, (25)

p ⇐⇒ ρ0

∫ ∫ ∫ piqj
k2

ûj(p, t)ûi(q, t)δ(p + q− k)dpdq. (26)

Plugging all these expressions in Eq. (20) we obtain the Navier-Stokes equation in
Fourier space,(

∂

∂t
+ νk2

)
ûi(k, t) = −i

∫ ∫ ∫
qj

(
δi,m −

kipm
k2

)
ûj(p, t)ûm(q, t)δ(p + q− k)dpdq

(27)
The term on the right hand side shows that the nonlinear terms involve triad inter-
actions between wave vectors such that k = p + q.

Now to obtain the energy equation we multiply e. (27) by û∗i (k, t) and we integrate
over k, (

∂

∂t
+ 2νk2

)
φi,i(k, t) =

Re
[∫ ∫ ∫

Aijm(k,p,q)û∗i (k, t)ûj(p, t)ûm(q, t)δ(p + q− k)dpdqdk
]
. (28)

The terms on the rhs represent the triad interactions that exchange energy between
ûi(k, t), ûj(p, t), and ûm(q, t). The coefficient Aijm are the coupling coefficient of
each triad and depends only on the wavenumbers.

If pressure and advection were not present, the energy equation would reduce to,(
∂

∂t
+ 2νk2

)
φi,i(k, t) = 0, (29)
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in which the wavenumbers are uncoupled. The solution to this equation is,

φi,i(k, t) = φi,i(k, 0)e−νk
2t. (30)

According to (30), the energy in wavenumber k decays exponentially, at a rate that in-
creases with increasing wavenumber magnitude k. Thus viscosity damps the smallest
spatial scale fastest.

We now restrict our analysis to isotropic velocity fields, so that we can use (19) and
simplify (28),

∂

∂t
E(k, t) = T (k, t)− 2νk2E(k, t), (31)

where T (k, t) comprises all triad interaction terms. If we examine the integral of this
equation over all k,

∂

∂t

∫ ∞
0

E(k)dk =
∫ ∞
0

T (k, t)dk − 2ν
∫ ∞
0

k2E(k)dk, (32)

and note that −2νk2E(k) is the Fourier transform of the dissipation term, then we
see that the equation for the total energy budget in (6), is recovered only if,∫ ∞

0
T (k, t)dk = 0. (33)

Hence the nonlinear interactions transfer energy between different wave numbers, but
do not change the total energy.

Now, adding a forcing term to the energy equation in k-space we have the following
equation for energy at a particular wavenumber k,

∂

∂t
E(k, t) = T (k, t) + F (k, t)− 2νk2E(k, t), (34)

where F (k, t) is the forcing term, and T (k, t) is the kinetic energy transfer, due to
nonlinear interactions. The kinetic energy flux through wave number k is Π(k, t),
defined as,

Π(k, t) =
∫ ∞
k

T (k′, t)dk′, (35)

or

T (k, t) = −∂Π(k, t)

∂k
. (36)

For stationary turbulence,

2νk2E(k) = T (k) + F (k). (37)

Remembering that the total dissipation rate is given by,

ε =
∫ ∞
0

2νk2E(k)dk (38)

6



and that the integral of the triad interactions over the whole k-space vanishes, we
have,

ε =
∫ ∞
0

F (k)dk. (39)

The rate of dissipation of energy is equal to the rate of injection of energy.

If the forcing F (k) is concentrated on a narrow spectral band centered around a wave
number ki, then for k 6= ki,

2νk2E(k) = T (k). (40)

In the limit of ν → 0, the energy dissipation becomes negligible at large scales. Thus
there must be an intermediate range of scales between the forcing scale and the scale
where viscous dissipation becomes important, where,

2νk2E(k) = T (k) ≈ 0. (41)

Notice that ε must remain nonzero, for nonzero F (k), in order to balance the energy
injection. This is achieved by

∫∞
0 k2E(k)dk → ∞, i.e. the velocity fluctuations at

small scales increase.

Then we find the energy flux in the limit ν → 0,

Π(k) = 0, : k < ki

Π(k) = ε : k > ki (42)

Hence at vanishing viscosity, the kinetic energy flux is constant and equal to the in-
jection rate, for wavenumbers greater than the injection wavenumber ki. The scenario
is as follows. (a) Energy is input at a rate ε at a wavenumber ki. (b) Energy is fluxed
to higher wavenumbers at a rate ε trough triad interactions. (c) Energy is eventually
dissipated at very high wavenumbers at a rate ε, even in the limit of ν → 0.

The statement that triad interactions produce a finite energy flux ε toward small
scales does not mean that all triad interactions transfer energy exclusively toward
small scales. Triad interactions transfer large amounts of energy toward both large
and small scales. On average, however, there is an excess of energy transfer toward
small scales given by ε.

Kolmogorov spectrum

Kolmogorov’s 1941 theory for the energy spectrum makes use of the result that ε, the
energy injection rate, and dissipation rate also controls the flux of energy. Energy
flux is independent of wavenumber k, and equal to ε for k > ki. Kolmogorov’s theory
assumes the injection wavenumber is much less than the dissipation wavenumber
(ki << kd, or large Re). In the intermediate range of scales ki < k < kd neither the
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forcing nor the viscosity are explicitly important, but instead the energy flux ε and
the local wavenumber k are the only controlling parameters. Then we can express
the energy density as

E(k) = f(ε, k) (43)

Now using dimensional analysis:

Quantity Dimension
Wavenumber k 1/L
Energy per unit mass E U2 ∼ L2/T 2

Energy spectrum E(k) EL ∼ L3/T 2

Energy flux ε E/T ∼ L2/T 3

In Eq. (43) the lhs has dimensionality L3/T 2; the dimension T−2 can only be balanced
by ε2/3 because k has no time dependence. Thus,

E(k) = ε2/3g(k). (44)

Now g(k) must have dimensions L5/3 and the functional dependence we must have,
if the assumptions hold, is,

E(k) = CKε
2/3k−5/3 (45)

This is the famous Kolmogorov spectrum, one of the cornerstone of turbulence theory.
CK is a universal constant, the Kolmogorov constant, experimentally found to be
approximately 1.5. The region of parameter space in k where the energy spectrum
follows this k−5/3 form is known as the inertial range. In this range, energy cascades
from the larger scales where it was injected ultimately to the dissipation scale. The
theory assumes that the spectrum at any particular k depends only on spectrally
local quantities - i.e. has no dependence on ki for example. Hence the possibility for
long-range interactions is ignored.

We can also derive the Kolmogorov spectrum in a perhaps more physical way (after
Obukhov). Define an eddy turnover time τ(k) at wavenumber k as the time taken
for a parcel with energy E(k) to move a distance 1/k. If τ(k) depends only on E(k)
and k then, from dimensional analysis,

τ(k) ∼
[
k3E(k)

]−1/2
(46)

The energy flux can be defined as the available energy divided by the characteristic
time τ . The available energy at a wavenumber k is of the order of kE(k). Then we
have,

ε ∼ kE(k)

τ(k)
∼ k5/2E(k)3/2, (47)

and hence,
E(k) ∼ ε2/3k−5/3. (48)
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Characteristic scales of turbulence

Kolmogorov scale

We have shown that viscous dissipation acts most efficiently at small scales. Thus
above a certain wavenumber kd, viscosity will become important, and E(k) will decay
more rapidly than in the inertial range. The regime k > kd is known as the dissipation
range. A simple scaling argument for kd can be made by assuming that the spectrum
follows the inertial scaling until kd and then drops suddenly to zero because of viscous
dissipation. In reality the transition between the two regimes is more gradual, but
this simple model predicts kd quite accurately. First we assume,

E(k) = CKε
2/3k−5/3, ki < k < kd,

E(k) = 0, k > kd. (49)

Substituting (38), and integrating between ki and kd we find,

kd ∼
(
ε1/4

ν3/4

)
. (50)

The inverse ld = 1/kd is known as the Kolmogorov scale, the scale at which dissipation
becomes important.

ld ∼
(
ν3/4

ε1/4

)
(51)

Integral scale

At the small wavenumber end of the spectrum, the important lengthscale is li, the
integral scale, the scale of the energy-containing eddies. li = 1/ki. We can evaluate
li in terms of ε. Let us write,

U2 = 2
∫ ∞
0

E(k)dk (52)

and substituting for E(k) from ( 45),

U2 ∼ 2
∫ ∞
0

CKε
2/3k−5/3dk ∼ 3CKε

2/3k
−2/3
i . (53)

Then,

ki ∼
ε

U3
(54)

so that li ∼ U3/ε. Then the ratio of maximum and minimum dynamically active
scales,

li
ld

=
kd
ki
∼ U3

ε3/4ν3/4
∼
(
Uli
ν

)3/4

∼ Re
3/4
li
. (55)
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where Reli is the integral Reynolds number. Hence in K41 the inertial range spans
a range of scales growing as the (3/4)th power of the integral Reynolds number. It
follows that if we want to describe such a flow accurately in a numerical simulation
on a uniform grid, the minimum number of points per integral scale is N ∼ Re

9/4
li

.
One consequence is that the storage requirements of numerical simulations scale as
Re

9/4
li

. Since the time step has usually to be taken proportional to the spatial mesh,
the total computational work needed to integrate the equations for a fixed number of
large eddy turnover times grows as Re3li . This shows that progress in achieving high
Reli simulations is very slow.

3D homogeneous isotropic turbulence in geophysical flows

The assumptions of homogeneity, stationarity and isotropy as employed by Taylor and
Kolmogorov have permitted tremendous advances in our understanding of turbulence.
In particular the theory of Kolmogorov remains an outstanding example of what we
mean by emergence of statistical predictability in a chaotic system. However this a a
course on geophysical turbulence and we must ultimately confront the fact that real
world physical flows rarely conform to our simplifying assumptions. In geophysical
turbulence, statistical symmetries are upset by a complex interplay of effects. Here
we focus on three important class of phenomena that modify small-scale turbulence in
the atmosphere and ocean: large-scale shear, stratification, and boundary proximity.
In a few weeks we will consider the role of rotation.

A very nice description of the effect of shear, stratification, and boundary proximity on
small-scale geophysical turbulence is given in the review article on ”3D Turbulence”
by Smyth and Moum included as part of the reading material. The student should
read that paper before proceeding with this chapter. Here we only provide some
additional comments on the definition of the Ozimdov scale.

Ozmidov scale

In geophysical flows 3D turbulence can be a reasonable approximation at scales small
enough that buoyancy and rotation effects can be neglected. Stratification becomes
important at scales smaller than rotation and it is therefore more important in setting
the upper scales at which 3D arguments hold. Stratification affects turbulence when
the Froude number Fr = U/(NH) < 1, where U is a typical velocity scale, and H
a typical vertical length scale of the motion. For large Fr, the kinetic energy of the
motion is much larger than the potential energy changes involved in making vertical
excursions of order H. For small Fr, the stratification suppresses the vertical motion
because a substantial fraction of kinetic energy must be converted to potential energy
when a parcel moves in the vertical.

We can define a characteristic scale lB at which overturning is suppressed by the
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buoyancy stratification as follows. The velocity associated with a particular length
scale l in high Reynolds number isotropic 3D turbulence scales like,

u2 ∼ ε2/3k−2/3 ⇐⇒ u ∼ (lε)1/3. (56)

Vertical motion at length scale l will be suppressed by the stratification when the
local Froude number Frl = 1. If we define the length scale at which this suppression
occurs as lB then,

uB
NlB

=
(lBε)

1/3

NlB
= 1 =⇒ lB =

(
ε

N3

)1/2

(57)

where lB is known as the Ozmidov scale.

In stratified geophysical flows, we have a scenario in which a regime transition occurs
at lB.

• l < lB: Fully 3D, isotropic turbulence. In this regime stratification can be
neglected, and an inertial range may exist, if ld << lB, i.e. ε/(νN2) >> 1.

• l > lB: Stratification influenced regime. In this regime ε is no longer constant
with wave number, since some kinetic energy is lost through conversion to po-
tential energy. 3D turbulence is replaced by motion controlled by the buoyancy
stratification: either internal waves, or a quasi-2-dimensional turbulence, often
described as “pancake turbulence”, characterized by strong vortical motions in
decoupled horizontal layers.

(For more on stratified turbulence, see Lesieur Ch XIII, Metais and Herring, 1989:
Numerical simulations of freely evolving turbulence in stably stratified fluids. J.
Fluid Mech., 239. Fincham, Maxworthy and Spedding, 1996: Energy dissipation and
vortex structure in freely-decaying stratified grid turbulence. Dyn. Atmos. Oceans,
23, 155-169.)

Further reading: Lesieur, Ch V, VI; Tennekes and Lumley, Ch 8; Frisch, Ch 5, 6, 7,
8.

Intermittency in isotropic 3D turbulence

[This chapter is a synthesis of material taken from Frisch (Turbulence, Cambridge
University Press, 1995) and Salmon (Lectures on Geophysical Fluid Dynamics, Oxford
University Press, 1998)]
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Kolmogorov’s 1941 model for the energy spectrum of isotropic homogeneous 3D tur-
bulence assumes that there is an intermediate region in wavenumber space, the iner-
tial range, where neither the forcing nor the viscosity are explicitly important. This
simple assumption paves the road to determining the shape of the energy spectrum.
Apart from forcing and dissipation, there are only two other dimensional parameters
in the Navier-Stokes equations: the energy flux ε and the local wavenumber k. Thus
the energy spectrum must be a function of these two parameters only. Dimensional
consistency is all that is required to get an expression for the energy spectrum,

E(k) ≈ CKε
2/3k−5/3. (58)

The model assumes that the spectra at any particular k depends only on spectrally
local quantities: the possibility for long-range interactions is ignored. In this chapter
we discuss whether the assumption of locality is satisfied in real flows, and we exam-
ine some of the developments in the theory of 3D turbulence beyond Kolmogorov’s
seminal work.

Landau and the lack of universality in turbulence

In a famous footnote in his book on fluid dynamics, L.D. Landau noted an important
inconsistency in K41 and objected to its universality. This led to a revision of the
theory, but most people feel that it also destroyed the hope that there can be an exact
theory. Landau’s objection is neither the only, nor the most serious objection to K41.
However it has helped the scientific community to better appreciate the enormous
assumptions underlying Kolmogorov’s theory.

Landau’s remark appeared in a footnote in the 1944 edition of his book on Fluid
mechanics, but in later editions found its way into the main text. Here is the full
text of the remark, as it appears on page 140 of the second edition of the English
translation of the book. The only changes are the substitution of Landau’s notation,
with the notation used in these notes.

One further general remark should be made. It might be thought that the possibility
exist in principle of obtaining a universal formula, applicable to any turbulent flow,
which should give S2(r) for all r that are small compared to r0. In fact, however, there
can be no such formula, as we see from the following argument. The instantaneous
value of (δv(r))2 might in principle be expressed as a universal function of the energy
dissipation ε at the instant considered. When we average these expressions, however,
an important part will be played by the manner of variation of ε over times of the
order of periods of the large eddies (with size ∼ r0), and this variation is different for
different flows. The result of the averaging therefore cannot be universal.

Kraichnan (1974) gave an illuminating reformulation of Landau’s footnote remark.
The essence of Landau’s objection is that K41 cannot apply to a collection of flows
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with different dissipation rates ε. First consider two completely separate flows. The
first flow is vigorously stirred so that ε1 is large. The second flow is weakly stirred so
that ε2 is small. If both flows are fully turbulent, then according to K41,

E1(k) = CKε
2/3
1 k−5/3, and E2(k) = CKε

2/3
2 k−5/3. (59)

Next consider a system composed of these two separate flows. If the flows occupy
equal volumes, then the dissipation and the energy spectrum of the composite system
are given by,

ε =
1

2
(ε1 + ε2) , and E(k) =

1

2
(E1(k) + E2(k)) . (60)

Thus for the composite system,

E(k) 6= CKε
2/3k−5/3. (61)

That is, the composite system does not obey K41, essentially because the average of
a two-thirds power is not equal to the two-thirds power of the average.

So far there seems to be no problem, because the composite flow is not a single flow,
and hence there is no reason why K41 should apply to it. But suppose that the
subscripts 1 and 2 do not refer to two flows, but to two large regions of the same flow
with locally different dissipation rates. We conclude that K41 fails in cases where
the dissipation rate ε, averaged over length scales characteristic of the inertial range,
fluctuates.

Frisch in chapter 8 of his book on Turbulence shows two examples of irregular signals.
The signal in Figure 8.1 is self-similar, i.e. successive enlargements of the signal have
the same general aspect, regardless of where the magnification window is positioned.
The signal in Figure 8.2 is intermittent, i.e. it displays activity during only a fraction
of the time, which decreases with the scale under consideration. Enlargements of
different sections of the signal produce completely different results, depending on
whether the window is positioned on an active or passive period. When dealing with
intermittent signals, the smaller the window, the more carefully it must be positioned
to produce a nontrivial function.

The model of Kolmogorov relied on the assumption that turbulent signals are self-
similar. Landau pointed out that, if dissipation is intermittent, then the model K41
had to be reconsidered. Laboratory experiments showed that Landau’s remark was
right on the spot: dissipation signals are strongly intermittent. In this section, we will
discuss the theoretical arguments that have been proposed to reconcile Kolmogorov
and Landau.
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Coherent structures

Half a century after Kolmogorov’s work on the statistical theory of three dimensional
turbulence, we still wonder how his work can be reconciled with Leonardo’s half a
millennium old drawings of eddy motion in the study for the elimination of rapids
in the river Arno. Indeed, Kolmogorov’s work on turbulence, ignores any structure
which may be present in the flow.

In the first lecture, we pointed out that many turbulent flows are known to possess
coherent structures. Their rediscovery by Crow and Champagne (1971) and Brown
and Roshko (1974) has led to questioning the relevance of the traditional statistical
theory of turbulence. The accepted paradigm is that, as far as the inertial-range
properties are concerned, coherent structures do not matter if they are confined to
the large scales of the flow. But is this really the case? And is there a fully devel-
oped inertial range in geophysical turbulence, where inhomogeneities and coherent
structures do not appear?

A nice discussion of the dichotomy between the spectral description of turbulence and
the description based on coherent patterns in real space can be found in the paper
by Armi and Flament (Journal of Geophysical Research, 90, 1985).

Further reading: Frisch, Ch 7, 8.
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