
Rotating Shallow-Water Waves

We now consider the effects of rotation and boundaries on fluids obeying (in the
horizontal) the linearized shallow-water equations

∂

∂t
u+ f ẑ× u = −∇φ

∂

∂t
φ+ gH∇ · u = 0

where u and ∇ are horizontal vectors/ operators.

Plane waves

For the simplest case, we take all fields proportional to exp(ık · x− ıωt) to find
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which implies
ıω[ω2 − f2 − gH(k2 + ℓ2)] = 0

which has three roots, ω = 0 and

ω2 = f2 + gH|k|2

which is the generalization of the long gravity wave dispersion relation. In the presence of
rotation, the waves become dispersive, with

cg =
√

gH
k

√

f2

gH
+ |k|2

These can be simplified by using the deformation radius
√
gH/f as a length scale

ω

f
=

√

1 + |kRd|2 ,
cg√
gH

=
kRd

√

1 + |kRd|2

Note that the shallow water equations will only be applicable for

kH = kRd

H

Rd

<< 1 ⇒ kRd <<

√

g/H

f
∼ 500

for a 4000m deep ocean.
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Dispersion relation for rotating plane waves

The ω = 0 root is non-trivial; to see this, let us look at the equations in vorticity/
divergence form. If ζ = ẑ · (∇× u) = ∂v

∂x
− ∂u

∂y
and D = ·∇u, then

∂

∂t
ζ + fD = 0

∂

∂t
D − fζ = −∇2φ

∂

∂t
φ+ gHD = 0

Eliminating D from the first and third equation gives

∂

∂t

(

ζ − f
φ

gH

)

≡ ∂

∂t
q = 0

The (linearized) potential vorticity q =
(

ζ − f φ
gH

)

is conserved. This equation implies

either the frequency is zero and the potential vorticity is not, or vice-versa. The zero-
frequency waves correspond to D = 0, ζ = ∇2φ/f and are geostrophically balanced.
When f varies, these turn into Rossby waves.
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If we recast the divergence equation in terms of q

∂

∂t
D − fq − f2

gH
φ = −∇2φ

and use the conservation of mass equation, we find

∂2

∂t2
φ+ fgHq + f2φ = gH∇2φ (1)

For the gravity waves with no PV signal,

∂2

∂t2
φ+ f2φ = gH∇2φ (2)

and we recover the dispersion relation above.

Adjustment

If we consider the initial value problem, we can specify the three fields, or, alterna-
tively, we can specify q(x), φ(x, 0) = φ0(x), and ∂

∂t
φ(x, 0) = φt0(x). Since q remains

unchanged, we can split the pressure up into the geostrophic part and the gravity wave
part

φ = φg(x) + φw(x, t)

∇2φg −
f2

gh
φg =

1

f
q

∂2

∂t2
φw + f2φw = gH∇2φw

φw(x, 0) = φ0(x)− φg(x) ,
∂

∂t
φw(x, 0) = φt0(x)

The equation for the geostrophic pressure shows that the influence of a localized potential
vorticity anomaly spreads out over a scale Rd =

√
gH/f called the “deformation radius.”

I.e., if q = q0δ(x) (independent of y), the geostophic pressure is

φg = −q0Rd

2f
exp(−|x/Rd|)
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Gravity waves in a channel

Now we consider waves in a channel 0 < y < W . In that case, we must apply the
boundary conditions v = 0 at y = 0,W . For the non-rotating case, the y-momentum
equation implies ∂

∂y
φ = 0 at the boundaries (or, more generally, ∇φ · n̂ = 0). The solutions

to the f = 0 version of (2) are
φ = cos(ℓy)eı(kx−ωt)

with
ω2 = gH(k2 + ℓ2)

and

ℓ = 0,
π

W
,
2π

W
,
3π

W
. . .
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The rotating case is more complex. If we stick with equation (2), we can use the two
momentum equations with v = 0 to show that

∂

∂t
u = − ∂

∂x
φ , fu = − ∂

∂y
φ ⇒ ∂2φ

∂t∂y
= f

∂φ

∂x

For waves with φ = Φ(y) exp(ıkx− ıωt), we must satisfy

∂

∂y
Φ = −fk

ω
Φ at y = 0, W

and

gH
∂2

∂y2
Φ = (f2 + gHk2 − ω2)Φ

We can look for solutions Φ = cos(ℓy + θ); the dispersion relation is then the same as for
plane waves, but the boundary conditions imply

ℓ sin θ =
fk

ω
cos θ and ℓ sin(ℓW + θ) =

fk

ω
cos(ℓW + θ) ⇒ tan(θ) = tan(ℓW + θ)

Thus ℓW is still an integer multiple of π. However, the ℓ = 0 solution is no longer
satisfactory, since it makes Φ constant, which will not be consistent with the boundary
conditions.
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The dispersion relation

ω2 = f2 + gH(k2 + ℓ2) = f2 + gH(k2 +
n2π2

W 2
)

now correspond to modes with the same cross channel wavelength as before, but which no
longer have their maxima at the channel walls:

tan θ =
fk

ℓω
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Dispersion relation in rotating channel
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A sample waveform for kW = π, ℓW = π, f/
√

(gH) = 5 is
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Kelvin waves

But we can also look for exponential solutions; we can see that

Φ = exp

(

−fk

ω
y

)

clearly satisfies the boundary conditions. Starting with the general case Aeαy + Be−αy

leads to the conclusion that the solution above is the only correct one. Putting this into
the equation for Φ gives

gH
f2k2

ω2
= f2 + gHk2 − ω2

which has the solutions
ω2 = gHk2 , ω2 = f2

The latter is spurious; if we examine the momentum equations with ω = f , we find
u = k

f
φ since the other solution v = ı k

f
φ will not satisfy the boundary conditions. The

mass equation then implies f2 = gHk2 which is not generally correct. Thus, we find that
the ℓ = 0 mode is replaced by one which decays across the channel as

Φ = exp

(

− f√
gH

y

)

= exp

(

− y

Rd

)
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and has frequency
ω =

√

gHk

These non-dispersive waves are called Kelvin waves.
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Full dispersion relation

The Kelvin wave dynamics is also simple. The v field would have the same cross-
channel structure but can only match the boundary conditions if it is everywhere zero.
Therefore, we have

∂

∂t
u = − ∂

∂x
φ

−fu = − ∂

∂y
φ

∂

∂t
φ+ gH

∂

∂x
u = 0

The 1st and 3rd equations look like non-rotating gravity waves; the second shows that
the cross-stream balance is geostrophic – the pressure varies across the channel in a way
consistent with the Coriolis force on the along-channel flow.
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