Rotating Shallow-Water Waves

We now consider the effects of rotation and boundaries on fluids obeying (in the
horizontal) the linearized shallow-water equations
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where u and V are horizontal vectors/ operators.
Plane waves
For the simplest case, we take all fields proportional to exp(ik - x — wwt) to find
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which implies
wlw? — f2 — gH(k*> +£%)] =0

which has three roots, w = 0 and
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which is the generalization of the long gravity wave dispersion relation. In the presence of
rotation, the waves become dispersive, with
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These can be simplified by using the deformation radius /gH/f as a length scale
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Note that the shallow water equations will only be applicable for
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for a 4000m deep ocean.



Rotating shallow water waves
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Dispersion relation for rotating plane waves

The w = 0 root is non-trivial; to see this, let us look at the equations in vorticity/
divergence form. If ( =z - (V x u) = 2 — g—;‘ and D = -Vu, then
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Eliminating D from the first and third equation gives
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The (linearized) potential vorticity ¢ = (C — f giH) is conserved. This equation implies

either the frequency is zero and the potential vorticity is not, or vice-versa. The zero-
frequency waves correspond to D = 0, ( = V2¢/f and are geostrophically balanced.
When f varies, these turn into Rossby waves.



If we recast the divergence equation in terms of ¢
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and use the conservation of mass equation, we find
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For the gravity waves with no PV signal,
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and we recover the dispersion relation above.
Adjustment

If we consider the initial value problem, we can specify the three fields, or, alterna-
tively, we can specify ¢(x), ¢(x,0) = ¢o(x), and %qf)(x,O) = ¢1o(x). Since ¢ remains
unchanged, we can split the pressure up into the geostrophic part and the gravity wave
part
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The equation for the geostrophic pressure shows that the influence of a localized potential
vorticity anomaly spreads out over a scale Ry = \/gH/f called the “deformation radius.”
Le., if ¢ = god(z) (independent of y), the geostophic pressure is
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Gravity waves in a channel

Now we consider waves in a channel 0 < y < W. In that case, we must apply the
boundary conditions v = 0 at y = 0,W. For the non-rotating case, the y-momentum
equation implies a%qb = 0 at the boundaries (or, more generally, V¢-n = 0). The solutions
to the f = 0 version of (2) are
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The rotating case is more complex. If we stick with equation (2), we can use the two
momentum equations with v = 0 to show that
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We can look for solutions ® = cos(fy + 6); the dispersion relation is then the same as for
plane waves, but the boundary conditions imply
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Thus (W is still an integer multiple of w. However, the ¢ = 0 solution is no longer
satisfactory, since it makes ® constant, which will not be consistent with the boundary
conditions.



The dispersion relation
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now correspond to modes with the same cross channel wavelength as before, but which no
longer have their maxima at the channel walls:
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Dispersion relation in rotating channel



A sample waveform for kW = 7, {W =7, f/\/(gH) =51is
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Kelvin waves

But we can also look for exponential solutions; we can see that

® = exp (—%y)

clearly satisfies the boundary conditions. Starting with the general case Ae®Y + Be™ Y
leads to the conclusion that the solution above is the only correct one. Putting this into
the equation for ® gives
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The latter is spurious; if we examine the momentum equations with w = f, we find
u = %qf) since the other solution v = z%gb will not satisfy the boundary conditions. The

mass equation then implies f2 = gHk? which is not generally correct. Thus, we find that
the ¢ = 0 mode is replaced by one which decays across the channel as
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and has frequency

These non-dispersive
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waves are called Kelvin waves.
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omega* W/sgrt(gH) for modes 0 to 5, fW/sgrt(gH)=5
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Full dispersion relation

The Kelvin wave dynamics is also simple. The v field would have the same cross-
channel structure but can only match the boundary conditions if it is everywhere zero.
Therefore, we have
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The 1% and 3"¢ equations look like non-rotating gravity waves; the second shows that
the cross-stream balance is geostrophic — the pressure varies across the channel in a way
consistent with the Coriolis force on the along-channel flow.



