
LTE Hydrostatic version

We begin with the linearized, traditional approx. eqns. with the hydrostatic approx.
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(with c2
s
defined in terms of ρ and p and being only a function of z). We define the dynamic

pressure by p′ = ρφ so that the horizontal eqns become the same as the SW eqns:
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We multiply the thermodynamic equation by g/ρ to get
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Therefore the vertical velocity is
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The conservation of mass equation becomes
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We now separate variables in vertical and horizontal/time; the vertical structure sat-
isfies
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and the mass equation turns into
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with the terms now just representing the horizontal and temporal structure.
Equations (1) and (2) are the SW eqns on the sphere – the Laplace tidal equations.
Alternatively, we can separate at the beginning:

u → uF (z) , p′ → φρF

and find
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The thermodynamics gives (following similar steps)
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