
Tides and Basins
Consider a basin with depth H(x) force by an equilibrium tide φe = gηe

∂

∂t
u + f ẑ× u = −∇(φ− φe)

∂

∂t
φ+∇ · [gH(x)u] = 0

Let’s solve for the velocities using

ut + f ẑ× u = −∇(φ− φe)
(cross with) ẑ ⇒

ẑ× ut − fu = −ẑ×∇(φ− φe)
(t derivative) ⇒

utt + f2u = f ẑ×∇(φ− φe)−
∂

∂t
∇(φ− φe)

Assuming e−ıωt,
(f2 − ω2)u = f ẑ×∇(φ− φe) + ıω∇(φ− φe)

From n̂ dot this, we get the boundary conditions

−f t̂ · ∇(φ− φe) + ıωn̂ · ∇(φ− φe) = 0

and the dynamical equation (multiplying the mass equation by f2 − ω2)

ıω(f2 − ω2)φ = f∇ · [gH ẑ×∇(φ− φe)] + ıω∇ · [gH∇(φ− φe)]
= f ẑ · [∇(φ− φe)×∇gH] + ıω∇ · [gH∇(φ− φe)]

so the general problem is

∇ · [gH∇(φ− φe)] = (f2 − ω2)φ+
ıf

ω
ẑ · [∇(φ− φe)×∇gH]

f t̂ · ∇(φ− φe) = ıωn̂ · ∇(φ− φe)

If we work in a circular basin with H = H(r) and take an eımθ form, this simplifies to

∇ · gH∇(φ− φe) = (f2 − ω2)φ+
fm

ωa
gHr(φ− φe)

∂

∂r
(φ− φe) =

fm

ωa
(φ− φe)

Numerical note: we would probably want to solve in terms of the height anomaly η = φ−φe
which has homogeneous but mixed boundary conditions and satisfies a forced equation in
the interior.
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Constant depth

When gH is constant, we have

∇2(φ− φe) =
f2 − ω2

gH
φ

∂

∂r
(φ− φe) =

fm

ωa
(φ− φe)

We can write the equations in non-dimensional form, scaling distances by the domain scale
a, and ω by f . Then

∇2(φ− φe) = α2(1− ω2)φ

∂

∂r
(φ− φe) =

m

ω
(φ− φe)

with α = a/Rd and Rd =
√
gH/f .

Free Modes: when φe = 0, we have an eigenvalue problem for ω. Let us make the
ansatz that ω > 1 (frequency greater than f – super-inertial). Then

φ = Jm(Kr) , K2 = α2(ω2 − 1)

This gives one equation relating K to ω; the other is

KJ ′m(K) =
m

ωa
Jm(K) or

KJ ′m(K)

Jm(K)
=
m

ω

For ω >> 1, the boundary condition says the K is a zero of J ′m; the “free-end” version of
the drumhead modes (i.e., φr ' 0 rather than φ = 0). We expect this to happen for small
basins since the time for a gravity wave to cross a/

√
gH becomes short compared to 1/f .

The dispersion relation
ω = ±

√
1 + (K/α)

has a large parameter multiplying K (which itself is greater than 2.4)
For the low frequency case,

φ = Im(Kr) , ω2 = 1− K2

α2
and

KI ′m(K)

Im(K)
=
m

ω

For the previous case, ω could have both positive and negatve values since the Jm functions
are oscilltory. Now, however, Im is strictly increasing so that the left-hand size is positive
and ω will be positive. The waves, will propagate counter-clockwise around the basin.
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They are Kelvin waves with the boundary on their right in the northern hemisphere. If ω
is small enough, K will be large and I ′m/IM → 1; i.e.,

ω ' m/K ' m/α

In dimensional form, this is

ω = fmRd/a = (m/a)
√
gH

making the Kelvin wave characteristic clear, since m/a is the wavenumber.
We show the left and right sides of the boundary condition equations for m = 1;

the frequences are given by the intersections with either the clockwise (w < 0) or coun-
terclockwise (w > 0) curves. If ω < f , we have just the single ccw Kelvin mode; above f ,
the two Poincarè waves have quite similar frequencies. The successive roots correspond to
more and more zeros in the radial direction.

There is also appears to be an inertial wave ω = f ; in this limit K → 0 and the
solution to the interior equation is just φ = rm; this is consistent with the boundary
condition φr(a) = mφ(a)/a. However, you cannot generally find a consistent radial flow
structure that satisfies the boundary conditions; this is a spurious mode.
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Forced Modes: in the simple case where the basin is small enough, we can take
φe = φ0x cos(ωt) = φ0r cos(θ) cos(ωt); this has ∇2φe = 0 so that the interior equation is
still

∇2φ = α2(1− ω2)φ

However ω is set by the tidal forcing, as is m = 1, so we will have I1 solutions for sub-
inertial frequencies and J1 for super-inertial cases. The boundary conditions now dermine
the amplitude of the waves. Since

cos(θ) cos(ωt) =
1

2
[cos(θ + ωt) + cos(θ − ωt)]

we are forcing waves in both directions around the boundary. In terms of < exp(ıθ − ıωt)
we have both positive and negative frequencies, forced with equal amplitudes.

For subinertial cases, φ = Aφ0

2 I1(Kr), we find

A[I1(K)
1

ω
−KI ′1(K)] =

1

ω
− 1

Here K = α
√

1− ω2.

Amplitude as a function of basin size for subinertial motions ω = 0.75

For the subinertial case, with I1 solutions, the (single) singularity only occurs for the ccw
(n = 1) solution since I ′1 and I1 are both positive.
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The superinertial case has roots at all the free modes, both cw and ccw since J1 and
J ′1 take on both signs..

A[J1(K)
1

ω
−KJ ′1(K)] =

1

ω
− 1

with K = α
√
ω2 − 1.

Amplitude as a function of basin size for superinertial motions ω/f = 1.5

Note that the modes here are widely separated because the plots are for a small basin
α = 1.

Bowl

When H = H(r), eqn (eq) is an ODE in r and should be solvable numerically. Free
solutions should now include two gravity waves and a topographic Rossby wave; these
should propagate ccw around the basin. So let’s check that: supposeH = H0[1−sr2/2a2] =
H0h so that H ′/H0 = −sr/a2, then

∇ · h∇φ =
f2 − ω2

gH0
φ− fns

ωa2
φ

(h = 1− s2r2/2a2) with

ω
∂

∂r
φ =

fn

a
φ

at r = a. We approximate ω << f and s << 1 to get

∇2φ =
f2

gH0
φ− fns

ωa2
φ
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with φ(a, θ) = 0. This has solutions

φ = Jn(knr/a)

with kn a zero of the Bessel function and

−k2n −
f2

gH0
= −fns

ωa2

for ω > 0 we have the n > 0 mode (ccw) with the shallow water on the right. Note that,
for the forced problem, the solutions for n = ±1 will no longer be the same.
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