Tides and Basins
Consider a basin with depth H(x) force by an equilibrium tide ¢, = g7,
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%¢5 + V- [gH(x)ul =0
Let’s solve for the velocities using
w t fixu= V(- o)
(cross with) z =
zxu — fu=-zxV(p— )
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Assuming e~ "¢,

(f2 - w2)u - fi X V(¢ - gbe) + ZCUV(Qb - Qbe)
From n dot this, we get the boundary conditions
_fE'v(¢_¢e)+ZWﬁ'v<¢_¢e) =0
and the dynamical equation (multiplying the mass equation by f? — w?)
w(f? —w?)¢ = fV-[gHz X V(¢ — ¢c)] + 1V - [gHV (¢ — ¢c)]
= [f2-[V(¢ — ¢¢e) x VgH] +wV - [gHV (¢ — ¢c)]

so the general problem is

VGV~ 6] = (1~ )6+ Lo V(6 — 60) x VgH]

ff'v(¢_¢e):ZWﬂ’v(¢_¢e)

If we work in a circular basin with H = H(r) and take an "™ form, this simplifies to

Y gHY(9 ~ 60) = (72~ )0+ L0gH, (6~ )
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Numerical note: we would probably want to solve in terms of the height anomaly n = ¢—a¢.
which has homogeneous but mixed boundary conditions and satisfies a forced equation in
the interior.



Constant depth

When gH is constant, we have
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We can write the equations in non-dimensional form, scaling distances by the domain scale
a, and w by f. Then

V6~ 6.) = 0’(1 )
L o—60="16-0

with « = a/Rg and Ry =+/gH/f.

FrREE MODES: when ¢. = 0, we have an eigenvalue problem for w. Let us make the
ansatz that w > 1 (frequency greater than f — super-inertial). Then

¢=Jn(Kr) , K°>=d*w’-1)
This gives one equation relating K to w; the other is

KﬂAKyzgymmj or %%%gL:%

For w >> 1, the boundary condition says the K is a zero of J/,; the “free-end” version of
the drumhead modes (i.e., ¢, ~ 0 rather than ¢ = 0). We expect this to happen for small
basins since the time for a gravity wave to cross a/v/gH becomes short compared to 1/f.
The dispersion relation

w==+y1+4(K/a)

has a large parameter multiplying K (which itself is greater than 2.4)
For the low frequency case,

K—2 and —KI;’%(K) L
a? I.(K) w

¢=1In(Kr) , w'=1-
For the previous case, w could have both positive and negatve values since the .J,,, functions
are oscilltory. Now, however, I,,, is strictly increasing so that the left-hand size is positive
and w will be positive. The waves, will propagate counter-clockwise around the basin.



They are Kelvin waves with the boundary on their right in the northern hemisphere. If w
is small enough, K will be large and I/, /Iy — 1; i.e.,

w~m/K~m/a
In dimensional form, this is

w = fmRq/a = (m/a)\/gH

making the Kelvin wave characteristic clear, since m/a is the wavenumber.
We show the left and right sides of the boundary condition equations for m = 1;

Modal frequencies alpha=5
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the frequences are given by the intersections with either the clockwise (w < 0) or coun-
terclockwise (w > 0) curves. If w < f, we have just the single ccw Kelvin mode; above f,
the two Poincare waves have quite similar frequencies. The successive roots correspond to
more and more zeros in the radial direction.

There is also appears to be an inertial wave w = f; in this limit K — 0 and the
solution to the interior equation is just ¢ = r"™; this is consistent with the boundary
condition ¢,(a) = me¢(a)/a. However, you cannot generally find a consistent radial flow
structure that satisfies the boundary conditions; this is a spurious mode.



FORCED MODES: in the simple case where the basin is small enough, we can take
be = pox cos(wt) = dor cos() cos(wt); this has V2¢, = 0 so that the interior equation is
still

V2 = a*(1 - w?)¢

However w is set by the tidal forcing, as is m = 1, so we will have I; solutions for sub-
inertial frequencies and J; for super-inertial cases. The boundary conditions now dermine
the amplitude of the waves. Since

cos(0) cos(wt) = %[COS(Q + wt) + cos(0 — wt)]

we are forcing waves in both directions around the boundary. In terms of $exp(:60 — wt)
we have both positive and negative frequencies, forced with equal amplitudes.
For subinertial cases, ¢ = A%Il(KT), we find

AIL(K) -~ KT(K)] = - 1

Here K = av1 — w?.
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Amplitude as a function of basin size for subinertial motions w = 0.75

For the subinertial case, with I; solutions, the (single) singularity only occurs for the ccw
(n = 1) solution since I] and I; are both positive.



The superinertial case has roots at all the free modes, both cw and ccw since J; and

J1 take on both signs..

ALVE) L — K (K = -~ 1

with K = avw? — 1.
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Amplitude as a function of basin size for superinertial motions w/f = 1.5

Note that the modes here are widely separated because the plots are for a small basin
a=1.

Bowl

When H = H(r), eqn (eq) is an ODE in r and should be solvable numerically. Free
solutions should now include two gravity waves and a topographic Rossby wave; these
should propagate ccw around the basin. So let’s check that: suppose H = Hy[l—sr?/2a?] =
Hoh so that H'/Hy = —sr/a?, then
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at r = a. We approximate w << f and s << 1 to get
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with ¢(a, ) = 0. This has solutions

¢ = Jn(knr/a)
with k,, a zero of the Bessel function and
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for w > 0 we have the n > 0 mode (ccw) with the shallow water on the right. Note that,
for the forced problem, the solutions for n = £1 will no longer be the same.



