
Shallow-water or long waves

For surface gravity waves, we can simplify the equations for the case of long waves (or
shallow-water waves) from either the potential or the original momentum equations. We’ll
do the latter, starting with the Boussinesq equations

Digression – Boussinesq equations

∂

∂t
u+ (ζ+ f)× u = −1

ρ
∇p−∇1

2
|u|2 −∇Φ

D

Dt
ln ρ+∇ · u = 0

D

Dt
ρ− 1

c2s

D

Dt
p = 0

with cs(p, ρ, S) the speed of sound. Let

ρ =
ρ0

1 + τ
, p = ρ0P̃ − ρ0Φ

so that the r.h.s of the momentum equations becomes

−(1 + τ)∇P̃ −∇1

2
|u|2 + τ∇Φ

We’ll take |τ | << 1, giving

∂

∂t
u+ (ζ+ f)× u = −∇

[

P̃ +
1

2
|u|2

]

+ τ∇Φ

and the mass equation

D

Dt
ln(1 + τ) = ∇ · u ⇒ ∇ · u = 0

Finally, the lowest order thermodynamic equation

−ρ0
D

Dt
τ − 1

c2
s0

(−ρ0
D

Dt
Φ) = 0

(with cs0 the large constant value) gives the conservation of potential buoyancy

D

Dt
b = 0 , b = gτ − g

c2
s0

z

(with Φ = gz). Finally, rewriting

P̃ = P +
1

2

Φ2

c2
s0

gives
∂

∂t
u+ (ζ+ f)× u = −∇

[

P +
1

2
|u|2

]

+ b ẑ

∇ · u = 0

D

Dt
b = 0
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From basic equations

For rotating, stratified flow with f = f ẑ, the vorticity evolves according to

∂

∂t
ζ+∇× ([ζ+ f ]× u) = ∇× (bẑ) = ∇b× ẑ

If we dot this with a unit vector n̂, we find the evolution equation for the components of
the absolute vorticity Z = ζ+ f

∂

∂t
Zn +∇ · (uZn) = ∇ · (Zun) + n̂ · (∇b× ẑ)

or
∂

∂t
Zn + u · ∇Zn = Z · ∇un +∇b · (ẑ× n̂)

Flow can remain irrotational when f and b are zero, but otherwise we generate vorticity
by vortex stretching, tilting, and baroclinicity.

Hydrostatic

If L >> H, then the continuity equation implies w ∼ H

L
uh = δuh and the w terms in

the x and y components of ζ are order δ2 compared to the others:

ζ1 =
∂w

∂y
− ∂v

∂z
≃ −∂v

∂z

so that the vorticity in the momentum equations is replaced by ζh = ∇×uh. Likewise the
w2 term in the Bernoulli function is order δ2 compared to the others. Finally, if P ∼ UL/T
then

[ ∂
∂t
w]

[ ∂

∂z
P ]

∼ UH/LT

UL/HT
= δ2

Dropping all the δ2 terms gives

∂

∂t
uh + (ζh + f ẑ)× u = −∇(P +

1

2
|uh|2) + bẑ

Note that vertical advection is still significant:

[w
∂

∂z
] = U

H

L

1

H
∼ [uh

∂

∂x
]

In conventional form, we have

D

Dt
uh + f ẑ× uh = −∇hP ,

∂

∂z
P = b

The horizontal vorticity (e.g. Z1) equation

D

Dt
Z1 = (f + ζ3)

∂u

∂z
++ζ1

∂

∂x
u+ ζ2

∂

∂y
u+ ŷ · ∇b

= (f + ζ3)ζ2 + ζ1
∂

∂x
u+ ζ2

∂

∂y
u+ ŷ · ∇b

shows that in the absence of buoyancy gradients, flow with ζ1, ζ2 initially zero will continue
to have velocities without vertical shear.
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Homogeneous fluid

Thus we have
∂

∂z
uh = 0

The vertical momentum equation implies ∂

∂z
P = 0 and the continuity equation tells us

that ∂

∂z
w is independent of depth so that

∂

∂z
w =

w(η(x, t))− w(−H(x, t))

H(x, t) + η(x, t)
=

1

H + η
(
∂

∂t
+ uh · ∇)(H + η)

Finally, we note that the pressure at the surface is

−ρ0gη(x, y, t) + ρ0P (x, y, t) = pa(x, y, t)

where pa is the atmospheric pressure. Thus

P = gη +
1

ρ0
pa

and our equations become

∂

∂t
uh + (ζ3 + f)ẑ× uh +∇(

1

2
|uh|2) =

D

Dt
uh + f ẑ× uh = −∇gη −∇pa

ρ0

∂

∂t
(H + η) +∇ · [uh(H + η)] = 0

These are the “shallow water equations”

Irrotational case

When f = 0, ζ3 will also stay zero, and we can use

uh = −∇Φ

and the momentum equations give

∂

∂t
∇Φ = ∇(gη +

pa
ρ0

+
1

2
|∇Φ|2) or

∂

∂t
Φ = gη +

1

2
|∇Φ|2 + pa

ρ0

and
∂

∂t
(H + η)−∇ · [(H + η)∇Φ = 0

(see below).
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Linearized

To consider waves, we will linearize these equations

∂

∂t
u+ f ẑ× u = −∇gη −∇pa/ρ0

∂

∂t
η +∇ ·Hu = 0

In the absence of forcing, rotation, and topography

∂2

∂t2
η = −H∇ · ∂u

∂t
= gH∇2η

– the ordinary wave equation (but 2D) – so that the wave speed is
√
gH. If we have

topography, the same procedure gives

∂2

∂t2
η = ∇ · gH∇η

Potential

Our basic nonlinear equations in the case where the bottom depth varies H = H0 +
h(x, t) become

∇2φ = 0

∂h

∂t
−∇φ · ∇h = φz at z = −H0 − h(x, t)

∂η

∂t
−∇φ · ∇η = −φz at z = η(x, t)

∂φ

∂t
= gη +

1

2
|∇φ|2 at z = η

If we nondimensionalize z by H0, x, y by L, η by η0, t by L/
√
gH0, h by h0 and φ by

gη0L/
√
gH0, we get

∂2φ

∂z2
+ δ2∇2

hφ = 0

ǫhδ
2
∂h

∂t
− ǫhǫδ

2∇φ · ∇h = ǫφz at z = −1 + ǫhh(x, t)

δ2
∂η

∂t
− δ2ǫ∇φ · ∇η = −φz at z = ǫη(x, t)

∂φ

∂t
= η +

ǫ

δ2
1

2

(

∂φ

∂z

)2

+ ǫ|∇hφ|2 at z = ǫη
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with δ = H0/L, ǫ = η0/H0, and ǫh = h0/H0. For the long-wave limit, we take δ2 << 1
and ǫ, ǫh ∼ 1 (at least by comparison). Then the lowest order equations tell us that

∂2φ0

∂z2
= 0 ,

∂φ

∂z
= 0 at z = −1 + ǫhh , ǫη

for which the solution is φ0 = Φ(x, y, t). This is consistent with the dynamic equation also.
At the next order (δ2), we find

∂2φ1

∂z2
= −∇2

hΦ

ǫh
∂h

∂t
− ǫhǫ∇Φ · ∇h = ǫ

∂

∂z
φ1 at z = −1 + ǫhh(x, t)

∂η

∂t
− ǫ∇Φ · ∇η = − ∂

∂z
φ1 at z = ǫη(x, t)

∂Φ

∂t
= η + ǫ|∇hΦ|2 at z = ǫη

Integrating Poisson’s equation in z and applying the boundary conditions gives the mass
conservation equation

(

∂

∂t
− ǫ∇Φ

)

H̃ = ǫH̃∇2

hΦ

with the nondimensional depth of the fluid being H̃ = 1+ ǫη+ ǫhh. The dynamic equation
is

∂

∂t
Φ = η + ǫ|∇hΦ|2

If we look at linear, flat-bottom waves h = 0, ǫ << 1 (but now requiring δ2 << ǫ << 1),
we have

∂

∂t
η = ∇2

hΦ

∂

∂t
Φ = η

giving the nondimensional wave equation

∂2

∂t2
η = ∇2

hη
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