Shallow-water or long waves

For surface gravity waves, we can simplify the equations for the case of long waves (or
shallow-water waves) from either the potential or the original momentum equations. We’ll
do the latter, starting with the Boussinesq equations

Digression — Boussinesq equations
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with ¢s(p, p, S) the speed of sound. Let
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so that the r.h.s of the momentum equations becomes
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We'll take |7| << 1, giving
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and the mass equation
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Finally, the lowest order thermodynamic equation
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(with cso the large constant value) gives the conservation of potential buoyancy
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(with ® = gz). Finally, rewriting
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From basic equations

For rotating, stratified flow with f = fz, the vorticity evolves according to
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If we dot this with a unit vector n, we find the evolution equation for the components of
the absolute vorticity Z = ¢ + f
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Flow can remain irrotational when f and b are zero, but otherwise we generate vorticity
by vortex stretching, tilting, and baroclinicity.

Hydrostatic

If L >> H, then the continuity equation implies w ~ %uh = duy and the w terms in

the  and y components of ¢ are order 62 compared to the others:
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so that the vorticity in the momentum equations is replaced by ¢;, = V x uy. Likewise the
w? term in the Bernoulli function is order 62 compared to the others. Finally, if P ~ UL/T
then
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Dropping all the §2 terms gives
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Note that vertical advection is still significant:
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In conventional form, we have
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The horizontal vorticity (e.g. Zl) equation
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shows that in the absence of buoyancy gradients, flow with (7, (5 initially zero will continue
to have velocities without vertical shear.



Homogeneous fluid

Thus we have
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The vertical momentum equation implies %P = 0 and the continuity equation tells us
that %w is independent of depth so that

0  wnxt) -w(-Hxt) 1 0
92" = H(x,t) + n(x,t) _H+n(a+uh'v)(H+n>

Finally, we note that the pressure at the surface is
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where p, is the atmospheric pressure. Thus
1
P =gn+ —pa
Po
and our equations become
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These are the “shallow water equations”
Irrotational case

When f =0, (3 will also stay zero, and we can use
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and the momentum equations give
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(see below).



Linearized

To consider waves, we will linearize these equations
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In the absence of forcing, rotation, and topography
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— the ordinary wave equation (but 2D) — so that the wave speed is y/gH. If we have
topography, the same procedure gives
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Potential

Our basic nonlinear equations in the case where the bottom depth varies H = Hy +
h(x,t) become
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If we nondimensionalize z by Hy, x,y by L, n by no, t by L/+/gHy, h by hy and ¢ by
gnoL//gHo, we get
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with 6 = Hy/L, € = n9/Hy, and €, = hq/Hy. For the long-wave limit, we take 62 << 1
and €, €, ~ 1 (at least by comparison). Then the lowest order equations tell us that
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for which the solution is ¢y = ®(x,y,t). This is consistent with the dynamic equation also.
At the next order (62), we find
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Integrating Poisson’s equation in z and applying the boundary conditions gives the mass
conservation equation
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with the nondimensional depth of the fluid being H = 1+ en+ e,h. The dynamic equation
is
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If we look at linear, flat-bottom waves h = 0, € << 1 (but now requiring 62 << € << 1),
we have
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giving the nondimensional wave equation
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