Stokes waves (surface)

We start with the homogeneous fluid eqns.
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with pressure p = —pogz + poP(z,y, 2,t). For irrotational flow, { = 0 and
u=-Vo

The dynamic equation is
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and

Vi =0 (1)
At the surface p =0 — P = gn so that
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and the kinematic condition becomes

9, _000n 09 o _
(97577_8:1:83: 0z 2=

We’ll consider just deep water so that V¢ — 0 as z — —o0.
Non-dimensionalize: ¢t ~ 1/\/gk, x&z ~ 1/k, n ~ h, ¢ ~ hy/g/k. Then the
boundary conditions are
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at z = en with € = hk the wave steepness. We still have
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Expansion
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at z = 0.
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still at z = 0.
Lowest order solutions are
no =cos(x —t) , ¢o = —sin(x —t)exp(z)
Forcing terms for next order
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Using 71 = nq cos(2[z — t]), ¢1 = p1sin(2[z — t]) exp(2z) gives
n1+p1:1/2 , n1—|—2p1:1/2 = n1:1/2 , p1=20

Thus 1
n = cos(x —t) + §€COS(2[I’ —t])

or, dimensionally,

n = hcos(klxr — ct]) + %khQ cos(2k[z — ct])

with ¢ = /g/k from the space and time non-dimensionalization. (Note — the sign is differ-
ent because 7 is the upward displacement [positive z] while Stokes dealt with a downward
displacement [positive y in his paper].)



