
Surface gravity waves

For a homogeneous layer of fluid with a free surface at z = η(x, y, t) and flat bottom
at z = −H, we rewrite the pressure as p = −ρ0gz + ρ0P (x, y, z, t) and the equations of
motion become

∂

∂t
u+ ζ× u = −∇(P +

1

2
u · u)

∇ · u = 0

Irrotational flow: When the vorticity ζ = ∇×u is initially zero, it remains zero.
We can see this from the vorticity equation derived by taking the curl of the momentum
equation

∂

∂t
ζ+∇× (ζ× u) = 0

Therefore, if ζ(x, 0) = 0, the vorticity will remain zero thereafter. In that case, the velocity
is given by the gradient of a potential function

u = −∇φ

We can define a scalar function

φ(x0)− φ(x) =

∫ x

x0

u · dℓ

with the integral taken along a path joining the two points. The integral is path-independent,
since the integral along a closed path

∮

u · dℓ = 0 by Stokes’ theorem. Thus φ with this
definition is indeed a scalar function, and its derivatives with respect to x give the velocity
components.

The equations in the interior of the fluid simplify to

−∇
∂

∂t
φ = −∇(P +

1

2
|∇φ|2)

or

∂

∂t
φ = P +

1

2
|∇φ|2

∇2φ = 0

The first equation tells us how the pressure varies given the potential; it’s the second
equation that determines the structure of the field. The wave part of the dynamics doesn’t
appear obvious in Laplace’s equation; instead it shows up in the boundary conditions.
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Boundary conditions: The lower boundary condition is straightforward: it states
that the normal component of velocity vanishes

w = −
∂φ

∂z
= 0 at z = −H

Note that this has a broader implication. It implies that a particle of fluid on the bottom
can move along the bottom but not off of it. In molecular terms, the condition simply
states that the mean upward and downward velocities are equal. The fact that molecules
can migrate away from the surface (and tracer material as well) is connected to the diffusive
part of the dynamics, not the molecular mean velocity u.

At the top surface, z = η(x, y, t), we apply the same argument that particles remain
at the interface; however, we must now account for the motion of the interface as well. We
find

∂

∂t
η + u(x, y, η, t) · ∇η = w(x, y, η, t)

or
D

Dt
(η − z) = 0 with

D

Dt
=

∂

∂t
−∇φ · ∇

Finally, we apply a dynamic condition at the surface that the pressure of the fluid must
equal the pressure of the air above

pa = −ρ0gη + ρ0P (x, y, η, t) ⇒ P (x, y, η, t) = gη(x, y, t) + pa/ρ0

Using the Bernouilli equation allows us to write this condition in terms of the potential
and the surface elevation

∂

∂t
φ−

1

2
|∇φ|2 = gη + pa/ρ0 at z = η

We could combine the kinematic and dynamic conditions to express the upper boundary
condition solely in terms of φ; however, we will leave the two fields explicitly.

Linearized eqns: We can linearize the equations by assuming that velocities are
small compared to the phase speed and changes in elevation are small compared tot he
wavelength or the depth of the fluid. Linearization alters the upper boundary conditions
in both the obvious way — dropping the |∇φ|2 and ∇φ · ∇η terms — and by allowing
the fields to be evaluated at z = 0 rather than z = η. Since φz(x, y, η, t) ≃ φz(x, y, 0, t) +
ηφzz(x, y, 0, t) + ..., the correction terms from evaluating at η rather than 0 are indeed
quadratic or higher order in the strength of the fields.

With these approximations, the equations become

∇2φ = 0

∂

∂z
φ = 0 at z = −H

∂

∂t
φ = gη + pa/ρ0

∂

∂t
η = −

∂

∂z
φ at z = 0
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Dispersion relation: For pa = 0 and solutions which are plane waves in the hori-
zontal, we have

η = η0 exp(ık · x− ıωt)

so that
φ = ı

gη0
ω

η0e
ıθ at‘ z = 0

which, together with the lower bc. and Laplace’s eqn., implies

φ = ı
g

ω
η0

cosh(K[z +H])

coshKH
eıθ

with K ≡ |k|. The kinematic equation now tells us

∂

∂t
η = −ı

gK

ω
η0

sinh(K[z +H])

coshKH
eıθ

giving the dispersion relationship

ω2 = gK tanh(KH)

Nondimensionally (using the scales H for length and
√

H/g for time) we have

ω2H//g = KH tanh(KH) or ω′ = ± [K ′ tanh(K ′)]
1/2

Graphics Dispersion relation: omega’ vs K’ log

Short wave limit: For short waves, KH >> 1 ⇒ tanh(KH) = 1 and

ω ∼
√

gK , c =

√

g

K
, cg =

1

2

√

g

K

k

K

The group velocity is half the phase speed.
Long wave limit: For long waves, KH << 1 ⇒ tanh(KH) = KH and

ω ∼
√

gHK , c =
√

gH , cg =
√

gH
k

K

The group velocity is equal to the phase speed.
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Evolution of an initial disturbance

We shall now look at the evolution of an initial compact disturbance

η(x, 0)

To see exactly what we need to specify, let’s reformulate the equations a bit. From the
momentum equations

∂

∂t
u = −∇P

and the continuity equation
∇ · u = 0

we can see that the pressure also satisfies Laplace’s equation

∇2P = 0

with an upper boundary condition

P = gη at z = 0

The lower boundary condition arises from

0 =
∂

∂t
w = −

∂

∂z
P ⇒

∂

∂z
P = 0 at z = −H

The kinematic condition at the upper boundary becomes

∂

∂t
η = w ⇒

∂2

∂t2
η =

∂

∂t
w = −

∂

∂z
P at z = 0

If we Fourier-analyze the surface elevation

η(x, t) =

∫∫

dk η̂(k, t) exp(ık · x)

and the pressure

P (x, z, t) =

∫∫

dk P̂ (k, z, t) exp(ık · x)

with K = |k|, we have
P̂ (k, 0, t)gη̂(k, t)

and, from the interior equation

∇2P = 0 =

∫∫

dk

(

∂2

∂z2
−K2

)

P̂ (k, z, t) exp(ık · x)
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Applying the lower boundary condition gives

P̂ (k, x, t) = gη̂(k.t)
coshK(z +H)

coshKH

and the kinematic condition gives

∂2

∂t2
η̂ = −gK tanh(KH)η̂ = −[Ω(k)]2η̂

This equation makes it clear that we need two conditions at t = 0, one on η itself and one
on w = ∂

∂tη. Given these, we can write the general solution

η(x, t) =

∫∫

dk η̂+(k)e
ık·x−ıΩ(k)t + η̂−(k)e

ık·x+ıΩ(k)t

with the first representing waves propagating in the positive k direction and the second
representing waves moving in the opposite direction. These are related to the initial
conditions by

η̂(k, 0) = η̂+ + η̂− ,
∂

∂t
η̂(k, 0) = −ıΩ(η̂+ − η̂−)

Note: we can also write down the radially symmetric solutions; in the case with zero
initial vertical velocity, we have

η(r, t) =

∫

∞

0

kdk a(k)J0(kr) cos(Ω(k)t)

One-D case: We shall look at the one-dimensional case for simplicity. Furthermore,
we can look at only the part corresponding to eastward propagation. Thus, we seek an
approximation to

η =

∫

dk η̂+(k)e
ıkx−ıΩ(k)t

Consider large x and t but with ratio order 1. We can do this by setting x = Ut and take
the limit for large t. Then

η =

∫

dk η̂+(k)e
ıtθ̃(k) , θ̃(k) = kU − Ω(k)

The stationary phase method tells us that most of the contribution to the integral comes
from the vicinity of ks where θ̃′(ks) = 0. Elsewhere, the phase changes rapidly (for large
t) and the integrand oscillates rapidly with zero net contribution. Alternatively we can
move into the complex k plane and see that there is a saddle point in the phase at ks; if we
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pass through this saddle point at a 45o angle, the argument of the exponential is strongly
peaked. Therefore the main contribution comes from near the saddle point cg(ks) = U

η ∼

∫

dk η̂+(ks) exp

(

ıtθ̃(ks) +
1

2
ıtθ̃′′(ks)(k − ks)

2 + . . .

)

∼ η̂+(ks)e
ıtθ̃(ks)

∫

dk exp

(

1

2
ıtθ̃′′(ks)(k − ks)

2

)

Treating the last integral as a probability integral with variance
√

−1/ıtθ̃′′(ks) gives

η ∼ η̂+(ks)e
ıtθ̃(ks)+ıπ/4

√

2π

θ′′(ks)t

An observer moving at speed U sees waves with wavenumber ks and frequency Ω(ks) where
cg(ks) = U ; the wavenumber and frequency do not change for this observer; the amplitude
does decrease as t−1/2.

On the other hand, an observer at a fixed x corresponds to U decreasing with time
and therefore ks increasing; the wavelength and period get shorter and shorter as time
increases. At fixed t, U increases with x, so that the longer waves appear at the front of
the disturbance.

Since the details of the dispersion relation did not really enter, the result holds for
any type of dispersive waves propagating in one direction; although we do need to watch
out for issues such as the sign of θ′′ etc. In two dimensions, the waves decay more rapidly
∼ t−1 (applying a similar asymptotic expansion to the Bessel function solution can show
this).
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