Ray Equations

In general, we deal with inhomogeneous media (e.g., variable depth), so that even the
linear dynamics becomes more difficult to solve analytically. However, when the wave-
lengths are much smaller than the scale over which the medium changes, we can use WKB
theory to make progress. Suppose the scale of the waves is £ and the scale for the medium
changes is L with ¢//L = e. Then we can look for solutions with

W = A(X,T)exp (%e)(x,:r))

where X = ex. Thus when x changes by order one, X changes by order € and 6 changes
by order € and the phase ® = /e changes by order 1. Spatial gradients will be computed
using
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If we make such substitutions for all the variables in the problem, the dynamics looks
exactly like the linear dynamics locally with k — V6 and w — —8%9. Note that we may
need T' = €™t rather than order n = 1 depending on the relationship between wavenumbers
and frequencies. These identifications make sense: locally the phase looks like
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Thus, the lowest order dynamics give
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It may be possible to solve this directly (at least numerically).
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Ray equations

However, we can also look at how wavenumbers and frequencies change with time
along a ray. Let’s begin by taking a T' derivative of (1)
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where the first term on the right represents time changes associated with the wavenumbers
— the first set of arguments V6 of the dispersion relation function 2 — while the second

represents changes arising from time variations in the media (e.g., large scale flow,...) —
the second set of arguments in 2. From the definition of group velocity, we have
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Taking an X derivative of (1) gives
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Equations (2) and (3) ensure that as we move along a ray with the “wave” at position
given by ‘
X =c4
the frequency and wavenumbers remain consistent with the local dispersion relation. To
see this, let us check that
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This requires
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Using (2) and (3) (and cancelling the 67" factor) gives
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which is indeed true.



