
Ray Equations

In general, we deal with inhomogeneous media (e.g., variable depth), so that even the
linear dynamics becomes more difficult to solve analytically. However, when the wave-
lengths are much smaller than the scale over which the medium changes, we can use WKB
theory to make progress. Suppose the scale of the waves is ℓ and the scale for the medium
changes is L with ℓ/L ≡ ǫ. Then we can look for solutions with

ψ = A(X, T ) exp

(

ı
1

ǫ
θ(X, T )

)

where X = ǫx. Thus when x changes by order one, X changes by order ǫ and θ changes
by order ǫ and the phase Θ = θ/ǫ changes by order 1. Spatial gradients will be computed
using

∂

∂x
= ǫ

∂

∂X

so that
∂

∂X
ψ =

∂θ

∂X
Aeıθ/ǫ + ǫ

∂A

∂X
eıθ/ǫ

If we make such substitutions for all the variables in the problem, the dynamics looks
exactly like the linear dynamics locally with k → ∇∇θ and ω → − ∂

∂T θ. Note that we may
need T = ǫnt rather than order n = 1 depending on the relationship between wavenumbers
and frequencies. These identifications make sense: locally the phase looks like

Θ = Θ0 + x · ∇Θ+ t
∂

∂t
Θ

= Θ0 + x · ∇∇θ + t
∂

∂T
θ

Thus, the lowest order dynamics give

∂

∂T
θ = −Ω(∇∇θ|X, T ) (1)

It may be possible to solve this directly (at least numerically).
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Ray equations

However, we can also look at how wavenumbers and frequencies change with time
along a ray. Let’s begin by taking a T derivative of (1)

∂

∂T

∂θ

∂T
= −∇∇j

∂θ

∂T
·
∂

∂kj
Ω−

∂

∂T
Ω

where the first term on the right represents time changes associated with the wavenumbers
– the first set of arguments ∇∇θ of the dispersion relation function Ω – while the second
represents changes arising from time variations in the media (e.g., large scale flow,...) –
the second set of arguments in Ω. From the definition of group velocity, we have

(

∂

∂T
+ cg · ∇∇

)

∂θ

∂T
= −

∂

∂T
Ω

or
(

∂

∂T
+ cg · ∇∇

)

ω =
∂

∂T
Ω (2)

Taking an X derivative of (1) gives

∂

∂T

∂θ

∂X
= −∇∇j

∂θ

∂X

∂

∂kj
Ω−

∂

∂X
Ω

or

(

∂

∂T
+ cg · ∇∇

)

k = −∇∇Ω (3)

Equations (2) and (3) ensure that as we move along a ray with the “wave” at position
given by

Ẋ = cg

the frequency and wavenumbers remain consistent with the local dispersion relation. To
see this, let us check that

ω(X+ cgδT, T + δT ) = Ω(k(X+ cgδT,X + cgδT, T + δT )

This requires
(

∂

∂T
+ cg · ∇∇

)

ωδT =
∂Ω

∂kj

(

∂

∂T
+ cg · ∇∇

)

kjδT + cg · ∇∇ΩδT +
∂

∂T
ΩδT

Using (2) and (3) (and cancelling the δT factor) gives

∂

∂T
Ω = −

∂Ω

∂kj

∂Ω

∂Xj
+ cg · ∇∇Ω +

∂

∂T
Ω

which is indeed true.
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