
Inhomogeneous media - wave action

We shall consider long waves embedded in a medium with variable depth H and
mean flows u (all vectors, gradient,... are horizontal for this section). The shallow water
equations are

∂

∂t
φ = gη +

1

2
|∇φ|2

∂

∂t
η = ∇ · [(H + η)∇φ]

We’ll assume that the background is a large-scale flow u(X, T ) and depth field H(X) +
η(X, T ) [which we call H(X, T )]. These vary only on space and time scales which are long
compared to the wave scales and periods (X = ǫx, T = ǫt). The perturbations satisfy

Dφ′ = gη′

Dη′ + η′∇ · u = ∇ · [H∇φ′]

with D ≡ ∂
∂t −∇φ · ∇ = ∂

∂t + u · ∇. If we now think of the waves as having structure

η′ = η̃(X, T ) exp

(

ı
1

ǫ
θ(X, T )

)

(meaning the real part, of course), an operation such as Dη′ becomes

Dη′ = ǫ

(

∂

∂T
+ u

∂

∂X
+ v

∂

∂Y

)

η′

= eıθ/ǫ
[

ı

(

∂θ

∂T
+ u

∂θ

∂X
+ v

∂θ

∂Y

)

η̃ + ǫ

(

∂

∂T
+ u

∂

∂X
+ v

∂

∂Y

)

η̃

]

= eıθ/ǫ [ıD0η̃ + ǫD1η̃]

where D0 is the algebraic quantity

D0 =
∂θ

∂T
+ u

∂θ

∂X
+ v

∂θ

∂Y

and D1 is the operator

D1 =
∂

∂T
+ u

∂

∂X
+ v

∂

∂Y

Likewise the gradient operator will pick up two terms, one from the phase and one from
the slow variations

∂

∂x
−→ ı

∂θ

∂X
+ ǫ

∂

∂X
, ∇ −→ ı∇∇θ + ǫ∇∇
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Our equations now become

ıD0φ̃+ ǫD1φ̃ = gη̃

ıD0η̃ + ǫD1η̃ + ǫη̃∇∇ · u = (ı∇∇θ + ǫ∇∇) · [H(ı∇∇θ + ǫ∇∇)φ̃]

and we can expand
η̃ = η + ǫη1 + . . . etc.

At lowest order, we get the local wave equations

ıD0φ = gη

ıD0η = −H|∇∇θ|2φ

which gives the dispersion relation

D2

0
= (ω − u · ∇∇θ)2 = gH|∇∇θ|2 ≡ ω̂2

Here ω̂ is the intrinsic frequency (that for waves in a medium at rest) and the frequency
ω has both an advective and a wave contribution

ω = u · ∇∇θ + ω̂

The amplitude is determined by the first order equations

ıD0φ1 +D1φ = gη1

ıD0η1 +D1η + η∇∇ · u = −H|∇∇θ|2φ1 + ıH∇∇θ · ∇∇φ+ ı∇∇ · [Hφ∇∇θ]

Again, we multiply the first equation by ıD0 and the second by g and add. The η1 and φ1

terms cancel (using the dispersion relation) and we are left with

ıD0D1φ+D1gη + gη∇∇ · u = ıgH∇∇θ · ∇∇φ+ ı∇∇ · [gHφ∇∇θ]

We substitute the lowest order expression gη = ıD0φ and divide by ı to get the equation
for the evolution of the amplitude

D0D1φ+D1(D0φ) +D0φ∇∇ · u = gH∇∇θ · ∇∇φ+∇∇ · [gHφ∇∇θ]

or
2D0D1φ− 2gH∇∇θ · ∇∇φ+ φ

[

D1D0 +D0∇∇ · u−∇∇ · (gH∇∇θ)
]

= 0

To put this in terms of the energy,

E =
1

2
H|∇∇θ|2|φ|2 + 1

2
g|η|2 =

1

g

[

gH|∇∇θ|2|φ|2 + 1

2
D2

0
|φ|2

]

= ω̂2|φ|2/g
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we multiply the equation by 1

2
φ∗ and add the conjugate to get

D0D1|φ|2 − gH∇∇θ · ∇∇|φ|2 + |φ|2
[

D1D0 +D0∇∇ · u−∇∇ · (gH∇∇θ)
]

= 0

Combining the first and third terms and the second and fifth gives

D1(ω̂|φ|2) +∇ · [gH∇∇θ|φ|2] + |φ|2ω̂∇∇ · u = 0

or
∂

∂t
(ω̂|φ|2) +∇ · [(u+

gH

ω̂
∇∇θ)ω̂|φ|2] = 0

But from the equation for the frequency, we find the group velocity is

cg = u+

√

gH
∇θ

|∇θ| = u+
gH

ω̂
∇∇θ

and our equation for the so-called “wave action” A = ω̂|φ|2/g = E/ω̂ becomes

∂

∂t
A+∇∇ · (cgA) = 0

Action changes locally by fluxing in or out at the group velocity. Note that it is the energy
divided by the intrinsic frequency which can now be balanced out, not the energy itself:

∂

∂t

E

ω̂
+∇∇ ·

(

cg
E

ω̂

)

= 0

Examples: For a first example, consider waves traveling into shallow water, H =
H(x). We’ll start with the waves impinging at an angle with wavenumber k0. The equa-
tions for changes along a ray

∂ω

∂t
+ cg · ∇ω = 0

∂k

∂t
+ cg · ∇k = −1

2

√

g

H

∂H

∂x
K

∂ℓ

∂t
+ cg · ∇ℓ = 0

imply that the frequency and y-wavenumber remain fixed. Therefore, when the wave
reached position X , its wavenumber is

K =

√

H0

H(X)
K0 , k =

√

H0

H(X)
K2

0
− ℓ2

0
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The ray itself satisfies the equation

dX

dt
=
√

gH(X)
k(X)

K(X)
=

gH(X)

ω
k(X)

from which we conclude that

dY

dX
=

ℓ0
k(X)

=

(

H0K
2

0

H(X)ℓ2
0

− 1

)−1/2

For H(x) = H0 exp(−γx), we have

Y =
2

γ
tan−1

(

√

K2

0

ℓ2
0

eγx − 1

)

But the essential character is clear from the expressions for the wavenumber and the
trajectories: as the depth decreases, the cross-shelf wavenumber increases so that the
waves are short and align more parallel with the coast. The trajectory slope decreases,
again indicating a turning until the waves are propagating perpendicular to the coast.

Since the intrinsic frequency is just ω, and it’s fixed, the energy satisfies

∂

∂t
E + cg · ∇E = −E∇ · cg = −gE

ω

∂

∂x
(Hk)

As the depth gets small, the group velocity behaves as
√
H so that the fluxes are convergent

and the energy density increases.
If we add an along-shore current v(x), the dispersion relation becomes

ω = vℓ+
√

gH(x)K

and ω and ℓ are still invariant along the trajectories. If v(x) exceeds
√
gH0, we will see

reflection of some waves back off-shore. Otherwise if the along-shore velocity reaches some
limit as the water shoals, K will still increase as H−1/2 so the waves still become parallel
to the shore. However, the intrinsic frequency is now ω̂ = ω − vℓ and decreases as the
velocity increases. Thus the increases in wave action associated with the convergence of
cg will not be entirely reflected in the energy E = ω̂A.

Graphics, Page 4: Propagation onto shelf linear nonlinear 2d am-

plitude
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http://lake.mit.edu/cgi-bin/fligif/~glenn/12.802/graphics/swlin?1
http://lake.mit.edu/cgi-bin/fligif/~glenn/12.802/graphics/swnl?1
http://lake.mit.edu/cgi-bin/fligif/~glenn/12.802/graphics/sw2dtop?1
http://lake.mit.edu/~glenn/12.802/graphics/sw2d.png
http://lake.mit.edu/~glenn/12.802/graphics/sw2d.png

