Group velocity

Phase and group velocities
The phase of the wave is # = k - x — wt, and the rate of movement in the direction
parallel to the wavenumber vector is

50 =k kot —wit=0 = 5t[|k|c—w] =0

so that
w

cC= —
13

But a packet of waves (and the energy) doesn’t propagate like that at all. To see how
it does, let’s suppose the initial condition has a sharply-peaked spectrum

ilk,0) = (X )

so that the initial condition represents a large-scale modulation of a small-scale wave

n(x,t) = /dzke_?’(ﬁ(@)exp(zk - X)
= /d2K ?(K) exp(iko - x + 1K - x)

= exp(ikg - x) /dgK ?(K) exp(1K - ex)
= A(ex) exp(ikg - x)
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The time-dependent solution is

n(x,t) = /d2k e_?’gb(@) exp(tk - x — Q(k)t)
= / d’K ¢(K) exp(1ko - x + 1K - x — 1Q(kg + eK)t)
= exp(tko - x —1Q(ko)?) /de ?(K) exp(tK - ex —1Q(ko + eK)t + 1Q (ko))

~ exp(ko - x —1Q(ko)t) /de ?(K) exp(tK - ex — 1K - Vi Q(ko)et)
= A(e[x — Vi t]) exp(iko - x —1Q2(ko)?)

Thus the envelope propagates at the group velocity
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For surface waves,
Q? = g|k| tanh(|k|H)

and K
Vi k| = &=
k|
so that (k| B)
tan
20c, = kgH {W + sechz(\k\H)}
Thus
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Another view of group velocity

and

Consider superimposing two waves,

n = 0.5 cos(k1z — wit) + 0.5 cos(kaz — wat)

with k1 = k—% < ko = k—l—% and w; :w—%, wo :w—f—%; the result has a
“beat-frequency” modulation.
Aw
n = cos(kr — wt) cos(—x — —1t)
2 2
which propagates at a speed
 Aw
= Ak
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Alternate view of two waves

Assuming that the shorter wave travels more slowly and the two waves start at time
t = 0 being in phase at = 0, the pattern will repeat exactly when the previous crests
of each of the two waves match up precisely:
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Two wave geometry. Solid=sum; dashed=longer, faster; dotted=shorter, slower

Thus we have 9 5
clT:—W—l—ch , CQT:—W+CQT
]{71 k2

We can think of these as simultaneous equations for 1/7" and c,:

21 1
cg-l-k—lf =G
21 1
Cg+k_2f =C2
solving these gives
cy = Clhy — gy _aki—oks _ wi-w  Aw
g i_;r_i_? k1 — ko ki — ko Ak



Dispersion of group

If we consider the next order in our expansion for sharply peaked spectra
w =~ exp(ikg - x — 12(ko)t) /d?’K d(K) exp(tK - ex — 1K - Vi Q(ko)et) x

1 9%Q
= —— K K€
exp( 22 ko, S€°1)

In a frame moving with the group X = ex — c,et, the changes on a time scale 7 = €t are
determined by

w ~ exp(tko - x — 1Q2(ko)t) /dgK »(K) exp(tK - X) exp(—z1 0°0

3 ek, )

For this we find the amplitude satisfies the Schrodinger equation

9. 192 9 o
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This looks like a diffusion equation (with an imaginary diffusivity) and can be solved in
much the same way. In particular, we can look for Gaussian solutions

w = A(T) exp(—a;; (1) X; X)
The result can be seen in the 1D case

LY
or T 2oz ox2 "

Plugging w = A(7)exp(—a(7)X?) into the previous equation and gathering the terms
which are proportional to X2 and to 1 gives

8 _ "2
8ta = -210"a
%A = 1" aA

This has solutions
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