
1. Seiches and resonances

a) Consider a circular, flat-bottomed lake of depth H and radius R >> H. What are
the natural oscillation frequencies? Use this to estimate the period for the gravest mode
in Lake Victoria and Great Salt Lake.

b) Consider the tidally forced problem in a deep ocean/shelf geometry but ignoring
f . The shelf has depth H1 and a vertical wall at x = −L. The “shelf break” is at
x = 0; the deep ocean H = H2 extends infinitely far to positive x. The tidal forcing
is ηe = η0 cos(kx + ωt). Find |η(−L)|/η0. Discuss the resonance and its relation to an
approximate free mode. Consider what happens as H2 >> H1.

2. Tidally-forced mean flows

Consider a 2D bank with shallow water dynamics including bottom drag
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The approach here is somewhat different from the version in class.
a) Write the equations for the transport U = uh, V = vh. Consider the tidal forcing as

applying a boundary condition U → A cosωt as x→ ±∞ assuming H becomes constant.
b) Derive the time averages of these equations; what does the mass equation tell you

about U? The y-momentum equation gives you an expression for v. Express this in terms
of huv.

c) Now, we want to calculate the Reynolds’ momentum flux. Suppose the wave am-
plitude is small and the mean flows are second order. Write the lowest order equations.
Apply the tidally forcing u0H = A cosωt. Find v0 and estimate huv ' Hu0v0.

d) Use this to write an expression for v. For a ridge topography, sketch the resultant
velocity and show that is anticyclonic.

3. Wind-driven upwelling

Consider a stratified ocean with a wind stress

τ/ρ = T cos(`y)

• Find the Ekman pumping. When would the stratification near the surface matter?
Figure out the conditions but for the rest of the problem assume it does not.

• Find the interior response and sketch the flow pattern.



4. Temperature and salinity eddy fluxes.

The tracer conservation equation for a generic tracer c is
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where κc is the molecular diffusivity of that tracer.
1) Assuming that c can be split into a large scale component c and a small scale compo-

nent c′, so that c = c+ c′ and c′ = 0, and similarly for the velocity field, write down
equations for the time-evolution of the large scale temperature T and salinity S.

2) Assume that the small-scale dynamics influence the large scale fields only through
vertical fluxes, which can be parameterized in terms of diffusion down the large scale
gradient with eddy diffusivity κ∗T for temperature and κ∗S for salinity. Rewrite the
equations from (a) incorporating this parameterization of the small-scale fluxes.

3) Now combine both equations from (b) to form one equation for the large scale buoy-
ancy b = αT − βS, and show that the small scale fluxes of buoyancy can again be
written in terms of diffusion in the direction of the large scale density gradient, with
eddy diffusivity

κ∗b =
κ∗TRρ − κ∗S
Rρ − 1

where Rρ = α∂T/∂z

β∂S/∂z
.

4) For warm salty water overlying cold fresh water, small-scale fluxes of salt and tem-
perature may be due to either turbulent mixing, or salt-fingering. In the turbu-
lent regime, salt and heat are mixed equally efficiently. In the salt fingering regime
(αw′T ′)/(βw′S′) ≈ 0.7. Find κ∗b/κ

∗
S under these two circumstances. Comment on the

sign of κ∗b

5. Instability of an oscillatory shear flow.

In class we discussed the Kelvin-Hemholtz instability of a shear flow in a stably strat-
ified fluid and used that model to study the instability of inertia-gravity waves. Here we
wish to step back and investigate whether the oscillatory character of the shear associated
with inertia-gravity waves may play an important role in the instability.

Consider the same setup we discussed in class. The basic state consists of two fluids
of different densities ρ1 > ρ2 separated by an interface. The lighter fluid is on top of the
heavier one, so the stratification is stable. The flow in the upper layer is U2 and in the
lower layer U1. While U1 and U2 are constant in space in each layer, they are different
in the two layers giving rise to a shear at the interface. Departing from the analysis we
discussed in class, we will assume that the flow in the two layers oscillates in time so that
U1 = U1(t) and U2 = U2(t).

1) Write the evolution equation for small perturbations of the interface η(x, t), i.e. per-
turbations independent of the y-direction. Consider solutions of the form η(x, t) =
η̂(t) exp(kx). Show that the evolution equation for η̂(t) is
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2) Show that you can eliminate the first derivative term by means of the substitution,

ζ(t) = η̂ exp
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Verify that the stability of ζ(t) is governed by,
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3) Now assume that
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)
∆U cosωt

as a simple model of an oscillatory wave field. Show that in this limit the stability of
the interface is governed by an equation of Mathieu type,
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Express the parameters δ and ε in terms of α1, α2 and ∆U .
4) Do you think the addition of oscillations makes the interface more or less stable

compared to the classical Kelvin-Helmoltz problem with ω = 0? You may want
to read about Mathieu’s equation to answer this question.


