
Upwelling

We look at the two-dimensional case with ∂
∂y = 0 and assume that the only important

mixing or friction terms act vertically.

D

Dt
u− fv = − ∂

∂x
p+

∂

∂z
ν
∂

∂z
u

D

Dt
v + fu =

∂

∂z
ν
∂

∂z
v

D

Dt
w = − ∂

∂z
p+ b+

∂

∂z
ν
∂

∂z
w

D

Dt
b =

∂

∂z
κ
∂

∂z
b

∂

∂x
u+

∂

∂z
w = 0

We look at D
Dt of the horizontal vorticity q = uz − wx and the streamfunction u = φz,

w = −φx, q = ∇2φ. We then get three equations (along with the Poisson equation for φ)

D

Dt
q = fvz − bx +

∂

∂z
ν
∂

∂z
q +

∂

∂z
(νzφzz)

D

Dt
v = −fφz +

∂

∂z
ν
∂

∂z
v

D

Dt
b =

∂

∂z
κ
∂

∂z
b

D

Dt
ψ =

∂

∂t
ψ + φz

∂

∂x
ψ − φx

∂

∂z
ψ ≡ ∂

∂t
ψ + [φ, ψ]

Note that the forcing for q is basically the imbalance in the thermal wind.

Interior/ boundary layer split

The friction is important in a thin layer near the top or bottom. Let’s take the
original momentum equations and separate them into interior and boundary layer flow
u = ui(x, z, t) + ue(x, z

′, t) with z varying on a scale H and z′ on an Ekman layer scale
d << H. We scale assumeing ui and ue are order U , x ∼ L, t ∼ L/U , p ∼ fUL; then

D

Dt
ui +

D

Dt
ue + f ẑ× ui + f ẑ× ue = −∇p+

∂

∂z
ν
∂

∂z
ui +

∂

∂z′
ν
∂

∂z′
ue

and we can take the ui to be inviscid

D

Dt
ui + f ẑ× ui = −∇p
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leaving
D

Dt
ue + f ẑ× ue =

∂

∂z′
ν
∂

∂z′
ue +

∂

∂z
ν
∂

∂z
ui

U2

L
fU

νU

d2
νU

H2

U

fL
1

ν

fd2
ν

fH2

where the second equation sohw the ratio to the Coriolis term. For small Rossby number
and small Ekman number ν/fH2 we have to take d ∼

√
ν/f to acheive a balance

f ẑ× ue =
∂

∂z
ν
∂

∂z
ue

The boundary conditions will be met by the combination of the two flow fields.

Interior

Away from the boundaries, the frictional terms can be neglected, and the flow is nearly
in thermal wind balance. Thus we can take

fvz = bx ⇒ fv = px , b = pz

(dropping the interior subscript and going back to the ∂
∂y = 0 form). Th flow is determined

by the “omega equation”. This is derived by taking f ∂
∂z of the meridional momenum

equations and subtracting ∂
∂x of the buoyancy equation, i.e.

∂

∂z
[
∂

∂t
px + [φ, px] + f2φz]−

∂

∂x
[
∂

∂t
pz + [φ, pz]−N2φx] = 0

or [φz, px]− [φx, pz] + f2φzz +N2φxx = 0

⇒
(f2 + p′xx)φzz + φxx(N2 + p′zz)− 2φxzp

′
xz = 0

where we’ve specifically built in the stratification using p =
∫ z
B(z) + p′ with N2 = Bz.

For N2H2 ∼ f2L2 and small Rossby number v << fL, the p′ terms are small, and we just
have

f2φzz +N2φxx = 0

The boundary conditions will be set by the frictional layers and the bottom slope.
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Ekman layers

We can write the Ekman layer equations in terms of a complex velocity

Ue ≡ ue + ıve

as
∂

∂z
ν
∂

∂z
Ue = ıfUe

Surface

At the top, the boundary conditions are just

ν
∂

∂z
Ue = τx + ıτy

since ∂
∂zui is order d/H smaller than the boundary layer terms. Here ~τ is the wind stress

divided by the water density. Integrating the Ue equation and taking the boundary layer
velocities to vanish as z << 0 gives

ıf

∫
dzUe = τx + ıτy or

∫
ue = −ẑ× ~τ

f

Taking the divergence of this equation leads to the Ekman pumping/ suction equation∫
∇ · ue = −

∫
∂

∂z
we = −we(0) = wi(0) =

∂

∂x

τy

f
− ∂

∂y

τx

f
= curl

~τ

f

For a wind in the y direction, then,

−φx(0) =
∂

∂x

τy

f
⇒ φ = −τ

y

f

To regularize the problem, we assume that τ increases from zero right at the coast to T
offshore. Then φ goes from zero to −T/f ; φx < 0 implying upwelling into the surface layer
to accomodate the increasing offshore Ekman transport.

Example: Suppose we have a very deep fjord with a wind blowing along it. Idealize
this as τy = τ0 sin(πx/L). Then the interior solution is

φ = −τ0
f

sin(πx/L) exp

(
Nπ

fL
z

)
and the compensating eastward transport occuring in the surface boundary layer.
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Bottom

The top condition is not affected by the form ν(z), but the bottom layer, which must
satisfy ui + ue = 0 at z = −H(x) is. We will take ν to be constant so that we can write a
solution

Ue = Ue0 exp(−
√
ıf

ν
[z +H]) = Ue0 exp(−(1 + ı)(z +H)/d)

with d =
√

2ν/f the Ekman layer thickness. The boundary condition implies

Ue0 = −ui(x,−H)− ıvi(x,−H) = −Ui(x,−H)

The mass equation for the Ekman vertical velocity is

∂

∂z
we = −∇ · ue = −<

(
[
∂

∂x
− ı ∂

∂y
] Ue

)
= <

(
[
∂

∂x
− ı ∂

∂y
] Ui(x,−H)E

)
with E = exp(−(1 + ı)(z +H)/d). We can integrate this to find

−we(x,−H) = wi(x,−H) = <
(∫ ∞
−H

[
∂

∂x
− ı ∂

∂y
] Ui(x,−H)E

)
or

wi(x,−H) = <
(

[
∂

∂x
− ı ∂

∂y
]

∫ ∞
−H

Ui(x,−H)E

)
+ <

(
−Ui(x,−H) [

∂

∂x
− ı ∂

∂y
] H

)
= <

(
d

1 + ı
[
∂

∂x
− ı ∂

∂y
] Ui(x,−H)

)
− ui(x,−H) · ∇H

= <
(
d

2
(1− ı)[ ∂

∂x
− ı ∂

∂y
] Ui(x,−H)

)
− ui(x,−H) · ∇H

Working out the terms shows us that

[
∂

∂x
− ı ∂

∂y
] Ui(x,−H) = ∇ · ui + ıζi − uz · ∇H − ı(vzHx − uzHy)

The last two terms will be negligible because the interior shear is weak; therefore, we end
up with

wi(x,−H) =
d

2
∇ · ui +

d

2
ζi − u · ∇H

The interior divergence is small, so that wi has a contribution from the topographic slope
and the Ekman pumping associted with the bottom stress acting against the interior
vortical motion

wi(x,−H) =
d

2
ζi − u · ∇H

For our ∂
∂y = 0 problem, this just gives

φx(x,−H) = −d
2
vx + φz(x,−Ha)Hx
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we(x,−H) = −wi(x,−H) = <
(

[
∂

∂x
− ı ∂

∂y
] Ui(x,−H)E

)
The large term here will come from the 1/d in the exponent so that

∂

∂z
we ' <

(
Ue0

1 + ı

d
(Hx − ıHy) exp(−(1 + ı)(z +H)/d)

)
The total horizontal velocity is

U = Ui(x, z)− Ui(x,−H) exp(−(1 + ı)(z +H)/d)

where we have defined the complex interior velocity and satisfied the bottom condition on
the horizontal velocities. We now use

wz = −∇ · u = −<
(

[
∂

∂x
− ı ∂

∂y
]U

)
Since Ui varies only slowly with z, the largest contribution will come from To
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and the streamfunction u = φz, w = −φx, q = ∇2φ

∂

∂t
u + (ζ + f)ẑ× u = −∇(p+

1

2
u2) +

∂

∂z
ν
∂

∂z
u

∂

∂z
p = b

∂

∂t
b+ u · ∇b+ w

∂

∂z
b =

∂

∂z
κ
∂

∂z
b

∇ · u +
∂

∂z
w = 0

Interior:
u,w small, non-diffusive
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We shall consider the effects of a wind blowing along-shore. As Ekman realized, the
transport in the near surface is 90o to the right of the wind (in the northern hemisphere).
Essentially, on scales comparable to the mixed-layer depth, the pressure forces and advec-
tion of momentum are small, so that the force applied by the wind is balanced by Coriolis
forces associated with the offshore flow. A southward wind on a western coast (Oregon,
California...) gives off-shore transport in the surface layer, which must be compensated for
by deeper on-shore flows (figure 1). The resulting flow begins to lift the density surfaces
near the coast; in turn, the isopycnals tend to slump back towards level and begin to
counteract the offshore tendency from the wind.

Figure : Sketch of upwelling system, showing along-shore wind, onshore deep flows,
offshore surface flows, and upwelling near the coast.

As a first model of the flow, we shall make a number of simplifications (some of which
will be remedied as we build a numerical model for the flow):

1) Straight coast: the topography, wind, and all flow variables are independent of the
alongshore distance ( ∂∂y = 0, c.f. Allen, 19xx). This kind of idealization is very useful,
since it reduces a three dimensional problem to a two dimensional one. Yet it can
be misleading; in the presence of strong alongshore currents, even small amplitude or
large-scale downstream variations may be significant (Chapman, 19xx)

2) Weak flows: we take advection to be much smaller than the Coriolis, pressure gradient,
and viscous terms. The Coriolis term will be written using only the vertical component
of the rotation 2~Ω = f ẑ. In the buoyancy equation, we assume that the deviations
B′(x, t) = B(x, t)−B(z) from a stratified state are small and neglect advection of B′

but not of B. Likewise we split φ into φ+ φ′.
3) Since we cannot resolve the scales where molecular viscosity is a main contributor to

the momentum balance (the Ekman scale, defined below, is about 10 cm), we take
the common approach of regarding the back and forth exchange of momentum across
a surface as caused by turbulence and having a larger effective viscosity.

Scale analysis

We can use the approach of scale analysis to decide the conditions under which such
approximations might be valid. We define “scales” for the different variables: for the
dependent variables, the scale value U , for example, would be the characteristic magnitude
of u; for independent variables, the scales represent the characteristic magnitude of some
field divided by the characteristic magnitude of its derivative so that we replace ∂

∂x by 1/L
in estimating sizes of the different terms in an equation. We can then decide which terms
are small compared to the others and drop them from subsequent analysis.

For example, mass equation and the scales of terms looks like

∂

∂x
u+

∂

∂z
w = 0

U

L

W

H∞

where the horizontal and vertical scales are set by the topographic profile

H = H∞ tanh(x/L)
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The last equation makes it clear that the use of mathematical functions necessitates
specifying scales: we cannot define the hyperbolic tangent of a dimensional length such
as 1.5 m. Trying to say it is tanh(1.5) as defined by a table or calculator does not
work; would one then say that tanh of 1500 cm is tanh(1500)? † Rather, we always
deal with functions acting on non-dimensional numbers which are the ratios of dimen-
sional variables such as x to scales with the same dimensions, L. But extending the
argument a little further, we could also be dealing with a shelf-slope topography H =
10 m tanh(x/3 km) + 500 m tanh([x− 150 km]/50 km) + 500 m which has multiple scales
for depth and length; therefore, scale analysis serves as a guide, but results should be
checked a-posteriori to verify that neglected terms are indeed unimportant.

For the mass equation, however, we will not drop terms since that would leave us
with an equation such as ∂u

∂x = 0 which has only trivial solutions; instead, we use the scale
analysis to find the sizes of terms for which we may not have an estimate for (such as W ).
Thus, we expect W = UH/L.

The momentum equations

∂

∂t
u+ u

∂

∂x
u+ w

∂

∂z
u− fv = − ∂

∂x
φ+ ν

∂2u

∂x2
+ ν

∂2u

∂z2

U

T

U2

L

WU

H∞
fV

Φ

L

νU

L2

νU

H2
∞

∂

∂t
v + u

∂

∂x
v + w

∂

∂z
v + fu = ν

∂2v

∂x2
+ ν

∂2v

∂z2

V

T

UV

L

WV

H∞
fU

νV

L2

νV

H2
∞

∂

∂t
w + u

∂

∂x
w + w

∂

∂z
w = − ∂

∂z
φ+B′ + ν

∂2w

∂x2
+ ν

∂2w

∂z2

W

T

UW

L

W 2

H∞

Φ

H
B′

νW

L2

νW

H2
∞

suggest choosing Φ ∼ fV L, U ∼ ν
fH2

∞
V , B′ ∼ fV L/H∞, T ∼ L/U . Using these and

normalizing the equations by the Coriolis or pressure terms gives the relative sizes:

D

Dt
u− fv = − ∂

∂x
φ+ ν

∂2u

∂x2
+ ν

∂2u

∂z2

εE2 1 1 δ2E2 E2

D

Dt
v + fu = ν

∂2v

∂x2
+ ν

∂2v

∂z2

ε 1 δ2 1

D

Dt
w = − ∂

∂z
φ+B′ + ν

∂2w

∂x2
+ ν

∂2w

∂z2

δ2εE2 1 1 δ4E2 δ2E2

† To view the problem another way, note that we often define functions as a series:

tanh(x) = x− x3

3 + 2x5

15 . . .. If we tried to substitute 1.5 m into this formula, we’d have to
add 1.5 m, 1.125 m3, and 1.0125 m5, which does not make physical sense.
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where the non-dimensional parameters characterizing the flow are

Rossby number ε =
V

fL

Aspect ratio δ =
H∞
L

Ekman number E =
ν

fH2
∞

These represent, respectively, the strength of advection (compared to Coriolis accelera-
tions), the geometric constraint (which reduces the ratio of vertical to horizontal veloci-
ties), and the strength of friction (again compared to the Coriolis term). For the model
we are now considering, we assume that all of these are small. Note that we still need to
relate V to the external forcing; however, we can reduce the wind forcing until the Rossby
number is indeed smaller than 1.

Over most of the flow, two important balances hold:

• The Coriolis force associated with the alongshore current is compensated by the cross-
shelf pressure gradient; the near-equality of these forces is called geostrophic bal-
ance and applies in many larger scale flows, where it takes the more general form

f ẑ× u = −∇φ′ ⇒ u =
1

f
ẑ×∇φ′

In ocean eddies, as in atmospheric weather systems, the fluid moves along the lines
of constant pressure, rather than accelerating down the gradient. In the northern
hemisphere, the flow will have the high pressure to the right, and the speed will
be proportional to the gradient (i.e., inversely proportional to the spacing between
pressure contours – see figure 16).

• Vertically, the fluid remains in hydrostatic balance

∂

∂z
φ′ = B′

so that we can find the pressure by integrating the density field. However, this process
introduces an unknown function of x, y, and t at the depth where the integration
begins.
Now we examine the buoyancy equation

D

Dt
B′ + wN2 = κ

∂2

∂x2
B′ + κ

∂2

∂z2
B′

UB′

L
WN2 κB′

L2

κB′

H2
∞

ε S
δ2

Pr

1

Pr
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where N2 ≡ ∂
∂zB is the square of the Brunt-Väisälä frequency. I.e., if we lift a blob of

fluid in a stratified system, it is heavier than its surroundings (negatively buoyant) and
accelerates downwards. It passes the initial position, decelerates, and comes to rest below,
where it now feels a positive buoyancy force. The period of the resulting oscillation is
2π/N .

The additional parameters above are

Stratification S =
N2H2

∞
f2L2

Prandtl number Pr =
ν

κ

and are both assumed to be order one.
Thus we arrive at a simplified dynamics holding over most of the fluid:

fv =
∂

∂x
φ′

B′ =
∂

∂z
φ′

∂u

∂x
+
∂w

∂z
= 0

fu = ν
∂2v

∂z2

N2w = κ
∂2B′

∂z2

(1)

We can eliminate variables from these equations to get a single PDE for φ or for w; however,
it is most convenient to work in terms of a streamfunction ψ for the flow.

Streamfunctions

For a two-dimensional incompressible flow, we can define the streamfunction difference
between two points ψ(x2)−ψ(x1) as the volume of fluid passing through a surface formed
by a curve joining the two points and sweeping a unit distance in the third direction.
Because the flow in non-divergent, we will get the same answer for any curve joining the
two points as long as it can be deformed into the original curve without crossing any
obstacles in the flow. From this definition, we have

ψ(x2 + δxx̂)− ψ(x2) = δx
∂ψ

∂x
= −w(x2)δx

ψ(x2 + δzẑ)− ψ(x2) = δz
∂ψ

∂z
= u(x2)δz

so that

u =
∂ψ

∂z
, w = −∂ψ

∂x
or u = −∇× ψŷ
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which clearly satisfies the mass equation ∂u
∂x + ∂w

∂z = 0. The streamfunction acts much like
the pressure in a geostrophic flow: instantaneously, the velocity vector is tangent to the
contours of ψ, satisfying a “left-hand rule” (because of the negative sign), and the speed
is inversely proportional to the separation of the ψ contours.

The upwelling equations can be reduced to an equation for ψ by first eliminating φ
from the geostrophic and hydrostatic equations

f
∂v

∂z
=
∂B′

∂x

(known as the thermal wind equation). The last two equations become

f
∂ψ

∂z
=
ν

f

∂2B′

∂x∂z
, −N2 ∂ψ

∂x
= κ

∂2B′

∂z2

from which we can eliminate the buoyancy to derive

f2

ν

∂2ψ

∂z2
+
N2

κ

∂2ψ

∂x2
= 0 (2)

Boundary conditions

Now we must consider the boundary conditions to apply when solving eqn. 13. The
flow normal to the bottom must be zero; this implies ψ should be constant (ψ = 0 since
we can add an arbitrary constant to the streamfunction without affecting the flow) along
the bottom. We might think that the same argument applies at the top, and the constant

must be the same since
∫ 0

−H dzu(x, z) = 0 = ψ(x, 0)−ψ(x,−H); however, ψ would then be
zero everywhere. What has gone wrong? The problem is that the full boundary conditions
at the top are

w = 0 , ν
∂v

∂z
=

τ

ρs
, ν

∂u

∂z
= 0 at z = 0

where τ is the wind stress and ρs the surface density. Our simplified system, eqns 11,
cannot satisfy all of these simultaneously. There is a thin region near the surface with
a characteristic scale hek =

√
ν/f which has an associated Ekman number of 1; in this

region (the Ekman layer) other terms appear in the dynamics and permit us to match all
of the conditions.

We can get at this directly by dropping only the terms which are order δ2 or ε and
then forming a streamfunction equation. The result

f2

ν

∂2ψ

∂z2
+
N2

κ

∂2ψ

∂x2
+ ν

∂6ψ

∂z6
= 0

allows specifying three boundary conditions at the top and at the bottom (the no-normal
flow plus two stress conditions at the top, and vanishing normal and tangential flow at the
bottom).
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However, we can gain more insight by examining the boundary layer flow directly;
we define the velocities near the surface (shallower than −hek) to be those predicted by
upwelling equations plus a correction uek. These velocities vanish at depths z << hek.
Since the upwelling equations define the velocities in terms of the pressure, we do not need
a correction to φ. (This is related to the fact that solving the diagnostic equation for
pressure will smooth out small scale structure in the velocities.) The correction equations

−fvek = ν
∂2

∂z2
uek

fuek = ν
∂2

∂z2
vek

∂uek
∂x

+
∂vek
∂y

+
∂wek
∂z

= 0

can be integrated vertically to see that the horizontal transports in the surface layer are
related to the wind stress

f

∫
vek = −τ (x)/ρs

f

∫
uek = τ (y)/ρs

∂

∂x

∫
uek +

∂

∂y

∫
vek + wek(0) = 0

These take care of the two stress conditions; satisfying the no normal flow condition gives

wek(0) + w(0) = 0 ⇒ w(0) =
∂

∂x

τ (y)

fρs
− ∂

∂y

τ (x)

fρs

For the upwelling problem, we have an offshore transport in the surface layer (for τ =
τ (y) > 0), and, if the wind increases offshore, that transport also increases. To provide
this additional fluid, water must upwell from below. The effective boundary condition for
the interior flow is

w = −∂ψ
∂x

=
∂

∂x

τ

fρs
or ψ = − τ

fρs

We take
τ = τ0(1− exp(−x/Lτ )

to avoid a singularity at the coast. To summarize, we must solve

∂2ψ

∂z2
+
N2ν

f2κ

∂2ψ

∂x2
= 0

ψ = 0 at z = −H∞ tanh(x/L)

ψ = − τ0
fρs

(1− exp(−x/Lτ ) at z = 0

(3)
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The solution is determined by two parameters N2H2
∞ν/f

2L2κ = S Pr and Lτ/L. The
idealized flow used previously corresponds to the weakly stratified solution when S Pr <<
1, so that equation (13) can be approximated by

∂2ψ

∂z2
' 0

The streamfunction just linearly interpolates between the value at the base of the sur-
face layer and the zero value at z = −H∞ tanh(x/L). As we increase the strength of the
stratification, the streamfunction spreads out horizontally (figure 17): the stronger strati-
fication inhibits the vertical motion. The x scale where horizontal and vertical derivative
are comparable is Rd ∼ NH/f ; it gives a rough measure of the width over which w will
be significant.

Figure : Contours of ψ for S Pr = 4× 10−2 (standard case) and S Pr = 4
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