
Vertical energy fluxes
From the linearized equations, we have the solutions
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with k the Horizontal wavenumber, θ = kx+mz−ωt, with m(z) the slowly-varying vertical
wavenumber, and
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where N2 is varying; to simplify, we use
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and get
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Since ω, f , and k do not change along the ray, constant flux implies mW 2 is constant, or
W ∼ m−1/2.
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Group velocity

For the vertical group velocity, we have
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The energy is
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(combining the u2/2 and w2/2 and the v2/2 and b2/2N2 and then using the dispersion
relation in the latter). Thus we find, as before,
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